Learn R Programming

⚠️There's a newer version (5.0.3) of this package.Take me there.

Seurat v2.3

Seurat is an R toolkit for single cell genomics, developed and maintained by the Satija Lab at NYGC.

Instructions, documentation, and tutorials can be found at:

Seurat is also hosted on GitHub, you can view and clone the repository at

Seurat has been successfully installed on Mac OS X, Linux, and Windows, using the devtools package to install directly from GitHub

Improvements and new features will be added on a regular basis, please contact seuratpackage@gmail.com with any questions or if you would like to contribute

Version History

March 22, 2018

  • Version 2.3
  • Changes:
    • New utility functions
    • Speed and efficiency improvments

January 10, 2018

  • Version 2.2
  • Changes:
    • Support for multiple-dataset alignment with RunMultiCCA and AlignSubspace
    • New methods for evaluating alignment performance

October 12, 2017

  • Version 2.1
  • Changes:
    • Support for using MAST and DESeq2 packages for differential expression testing in FindMarkers
    • Support for multi-modal single-cell data via @assay slot

July 26, 2017

  • Version 2.0
  • Changes:
    • Preprint released for integrated analysis of scRNA-seq across conditions, technologies and species
    • Significant restructuring of code to support clarity and dataset exploration
    • Methods for scoring gene expression and cell-cycle phase

October 4, 2016

  • Version 1.4 released
  • Changes:
    • Improved tools for cluster evaluation/visualizations
    • Methods for combining and adding to datasets

August 22, 2016:

  • Version 1.3 released
  • Changes :
    • Improved clustering approach - see FAQ for details
    • All functions support sparse matrices
    • Methods for removing unwanted sources of variation
    • Consistent function names
    • Updated visualizations

May 21, 2015:

  • Drop-Seq manuscript published. Version 1.2 released
  • Changes :
    • Added support for spectral t-SNE and density clustering
    • New visualizations - including pcHeatmap, dot.plot, and feature.plot
    • Expanded package documentation, reduced import package burden
    • Seurat code is now hosted on GitHub, enables easy install through devtools
    • Small bug fixes

April 13, 2015:

  • Spatial mapping manuscript published. Version 1.1 released (initial release)

Copy Link

Version

Install

install.packages('Seurat')

Monthly Downloads

49,115

Version

2.3.3

License

GPL-3 | file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

May 10th, 2024

Functions in Seurat (2.3.3)

CalcVarExpRatio

Calculate the ratio of variance explained by ICA or PCA to CCA
DBClustDimension

Perform spectral density clustering on single cells
CustomPalette

Create a custom color palette
ColorTSNESplit

Color tSNE Plot Based on Split
CellPlot

Cell-cell scatter plot
Convert

Convert Seurat objects to other classes and vice versa
DimElbowPlot

Quickly Pick Relevant Dimensions
CreateSeuratObject

Initialize and setup the Seurat object
CollapseSpeciesExpressionMatrix

Slim down a multi-species expression matrix, when only one species is primarily of interenst.
ClassifyCells

Classify New Data
CombineIdent

Sets identity class information to be a combination of two object attributes
DimHeatmap

Dimensional reduction heatmap
DMPlot

Plot Diffusion map
FeaturePlot

Visualize 'features' on a dimensional reduction plot
DimPlot

Dimensional reduction plot
DimTopCells

Find cells with highest scores for a given dimensional reduction technique
DMEmbed

Diffusion Maps Cell Embeddings Accessor Function
FastWhichCells

FastWhichCells Identify cells matching certain criteria (limited to character values)
GenePlot

Scatter plot of single cell data
FetchData

Access cellular data
ExpVar

Calculate the variance of logged values
ExtractField

Extract delimiter information from a string.
ExpSD

Calculate the standard deviation of logged values
FitGeneK

Build mixture models of gene expression
DoKMeans

K-Means Clustering
ICAPlot

Plot ICA map
CustomDistance

Run a custom distance function on an input data matrix
DESeq2DETest

Differential expression using DESeq2
DotPlot

Dot plot visualization
DiffExpTest

Likelihood ratio test for zero-inflated data
FindConservedMarkers

Finds markers that are conserved between the two groups
FindMarkers

Gene expression markers of identity classes
GetCellEmbeddings

Dimensional Reduction Cell Embeddings Accessor Function
DiffTTest

Differential expression testing using Student's t-test
FilterCells

Return a subset of the Seurat object
GetCentroids

Get cell centroids
DarkTheme

Dark Theme
FindAllMarkers

Gene expression markers for all identity classes
FindMarkersNode

Gene expression markers of identity classes defined by a phylogenetic clade
LogVMR

Calculate the variance to mean ratio of logged values
ICALoad

ICA Gene Loadings Accessor Function
ICHeatmap

Independent component heatmap
ICAEmbed

ICA Cell Embeddings Accessor Function
GetClusters

Get Cluster Assignments
MASTDETest

Differential expression using MAST
MinMax

Apply a ceiling and floor to all values in a matrix
FindVariableGenes

Identify variable genes
GetDimReduction

Dimensional Reduction Accessor Function
NegBinomDETest

Negative binomial test for UMI-count based data
ICTopCells

Find cells with highest ICA scores
ICTopGenes

Find genes with highest ICA scores
KMeansHeatmap

Plot k-means clusters
DotPlotOld

Old Dot plot visualization (pre-ggplot implementation) Intuitive way of visualizing how gene expression changes across different identity classes (clusters). The size of the dot encodes the percentage of cells within a class, while the color encodes the AverageExpression level of 'expressing' cells (green is high).
ExpMean

Calculate the mean of logged values
MakeSparse

Make object sparse
PCTopCells

Find cells with highest PCA scores
LogNormalize

Normalize raw data
FindAllMarkersNode

Find all markers for a node
DimTopGenes

Find genes with highest scores for a given dimensional reduction technique
DoHeatmap

Gene expression heatmap
NegBinomRegDETest

Negative binomial test for UMI-count based data (regularized version)
NumberClusters

Convert the cluster labels to a numeric representation
MarkerTest

ROC-based marker discovery
MatrixRowShuffle

Independently shuffle values within each row of a matrix
PCTopGenes

Find genes with highest PCA scores
PCElbowPlot

Quickly Pick Relevant PCs
OldDoHeatmap

Gene expression heatmap
FindClusters

Cluster Determination
GenesInCluster

GenesInCluster
MergeNode

Merge childen of a node
PCALoad

PCA Gene Loadings Accessor Function
GetGeneLoadings

Dimensional Reduction Gene Loadings Accessor Function
GetAssayData

Accessor function for multimodal data
PCAEmbed

PCA Cell Embeddings Accessor Function
HTODemux

Demultiplex samples based on data from cell 'hashing'
PrintAlignSubspaceParams

Print AlignSubspace Calculation Parameters
InitialMapping

Infer spatial origins for single cells
PrintFindClustersParams

Print FindClusters Calculation Parameters
PCHeatmap

Principal component heatmap
PrintICA

Print the results of a ICA analysis
FeatureHeatmap

Vizualization of multiple features
PrintICAParams

Print ICA Calculation Parameters
JackStraw

Determine statistical significance of PCA scores.
ProjectPCA

Project Principal Components Analysis onto full dataset
PlotClusterTree

Plot phylogenetic tree
PoissonDETest

Poisson test for UMI-count based data
PrintCCAParams

Print CCA Calculation Parameters
PrintPCA

Print the results of a PCA analysis
RefinedMapping

Quantitative refinement of spatial inferences
RemoveFromTable

Remove data from a table
PurpleAndYellow

A purple and yellow color palette
FeatureLocator

Feature Locator
ReorderIdent

Reorder identity classes
PrintTSNEParams

Print TSNE Calculation Parameters
HoverLocator

Hover Locator
TransferIdent

Transfer identity class information (or meta data) from one object to another
PrintPCAParams

Print PCA Calculation Parameters
HTOHeatmap

Hashtag oligo heatmap
JackStrawPlot

JackStraw Plot
RunCCA

Perform Canonical Correlation Analysis
RunDiffusion

Run diffusion map
NormalizeData

Normalize Assay Data
KClustDimension

Perform spectral k-means clustering on single cells
PrintSNNParams

Print SNN Construction Calculation Parameters
ProjectDim

Project Dimensional reduction onto full dataset
MergeSeurat

Merge Seurat Objects
RenameIdent

Rename one identity class to another
RunTSNE

Run t-distributed Stochastic Neighbor Embedding
UpdateSeuratObject

Update old Seurat object to accomodate new features
RenameCells

Rename cells
PrintCalcParams

Print the calculation
PrintCalcVarExpRatioParams

Print Parameters Associated with CalcVarExpRatio
Read10X

Load in data from 10X
MetageneBicorPlot

Plot CC bicor saturation plot
PCAPlot

Plot PCA map
RunUMAP

Run UMAP
RidgePlot

Single cell ridge plot
Read10X_h5

Read 10X hdf5 file
RunICA

Run Independent Component Analysis on gene expression
RunPCA

Run Principal Component Analysis on gene expression using IRLBA
RunPHATE

Run PHATE
SetIdent

Set identity class information
ScaleData

Scale and center the data.
RunMultiCCA

Perform Canonical Correlation Analysis with more than two groups
SplitObject

Splits object into a list of subsetted objects.
ScaleDataR

Old R based implementation of ScaleData. Scales and centers the data
PCASigGenes

Significant genes from a PCA
PrintDMParams

Print Diffusion Map Calculation Parameters
StashIdent

Set identity class information
SampleUMI

Sample UMI
Seurat-deprecated

Deprecated function(s) in the Seurat package
TSNEPlot

Plot tSNE map
SetAllIdent

Switch identity class definition to another variable
SaveClusters

Save cluster assignments to a TSV file
PrintDim

Print the results of a dimensional reduction analysis
TobitTest

Differential expression testing using Tobit models
SubsetByPredicate

Return a subset of the Seurat object.
VizICA

Visualize ICA genes
VlnPlot

Single cell violin plot
SetClusters

Set Cluster Assignments
SubsetColumn

Return a subset of columns for a matrix or data frame
SetAssayData

Assay Data Mutator Function
VizPCA

Visualize PCA genes
pbmc_small

A small example version of the PBMC dataset
WhichCells

Identify cells matching certain criteria
SplitDotPlotGG

Split Dot plot visualization
Shuffle

Shuffle a vector
SetDimReduction

Dimensional Reduction Mutator Function
seurat

The Seurat Class
ValidateClusters

Cluster Validation
SubsetRow

Return a subset of rows for a matrix or data frame
SubsetData

Return a subset of the Seurat object
VariableGenePlot

View variable genes
VizDimReduction

Visualize Dimensional Reduction genes
ValidateSpecificClusters

Specific Cluster Validation
WilcoxDETest

Differential expression using Wilcoxon Rank Sum
cc.genes

Cell cycle genes
AverageExpression

Averaged gene expression by identity class
AugmentPlot

Augments ggplot2 scatterplot with a PNG image.
AverageDetectionRate

Probability of detection by identity class
CellCycleScoring

Score cell cycle phases
AddSamples

Add samples into existing Seurat object.
CaseMatch

Match the case of character vectors
AddModuleScore

Calculate module scores for gene expression programs in single cells
AddSmoothedScore

Calculate smoothed expression values
CalcAlignmentMetric

Calculate an alignment score
AssessNodes

Assess Internal Nodes
AddImputedScore

Calculate imputed expression values
BuildRFClassifier

Build Random Forest Classifier
AssessSplit

Assess Cluster Split
BuildSNN

SNN Graph Construction
AddMetaData

Add Metadata
AlignSubspace

Align subspaces using dynamic time warping (DTW)
AveragePCA

Average PCA scores by identity class
BlackAndWhite

A black and white color palette
BuildClusterTree

Phylogenetic Analysis of Identity Classes
zfRenderSeurat

Zebrafish analysis functions