Learn R Programming

Seurat (version 4.3.0.1)

PrepSCTFindMarkers: Prepare object to run differential expression on SCT assay with multiple models

Description

Given a merged object with multiple SCT models, this function uses minimum of the median UMI (calculated using the raw UMI counts) of individual objects to reverse the individual SCT regression model using minimum of median UMI as the sequencing depth covariate. The counts slot of the SCT assay is replaced with recorrected counts and the data slot is replaced with log1p of recorrected counts.

Usage

PrepSCTFindMarkers(object, assay = "SCT", verbose = TRUE)

Value

Returns a Seurat object with recorrected counts and data in the SCT assay.

Arguments

object

Seurat object with SCT assays

assay

Assay name where for SCT objects are stored; Default is 'SCT'

verbose

Print messages and progress

Examples

Run this code
data("pbmc_small")
pbmc_small1 <- SCTransform(object = pbmc_small, variable.features.n = 20)
pbmc_small2 <- SCTransform(object = pbmc_small, variable.features.n = 20)
pbmc_merged <- merge(x = pbmc_small1, y = pbmc_small2)
pbmc_merged <- PrepSCTFindMarkers(object = pbmc_merged)
markers <- FindMarkers(
  object = pbmc_merged,
  ident.1 = "0",
  ident.2 = "1",
  assay = "SCT"
)
pbmc_subset <- subset(pbmc_merged, idents = c("0", "1"))
markers_subset <- FindMarkers(
  object = pbmc_subset,
  ident.1 = "0",
  ident.2 = "1",
  assay = "SCT",
  recorrect_umi = FALSE
)

Run the code above in your browser using DataLab