Run partial singular value decomposition using irlba
RunSVD(object, ...)# S3 method for default
RunSVD(
object,
assay = NULL,
n = 50,
scale.embeddings = TRUE,
reduction.key = "LSI_",
scale.max = NULL,
verbose = TRUE,
irlba.work = n * 3,
tol = 1e-05,
...
)
# S3 method for Assay
RunSVD(
object,
assay = NULL,
features = NULL,
n = 50,
reduction.key = "LSI_",
scale.max = NULL,
verbose = TRUE,
...
)
# S3 method for Seurat
RunSVD(
object,
assay = NULL,
features = NULL,
n = 50,
reduction.key = "LSI_",
reduction.name = "lsi",
scale.max = NULL,
verbose = TRUE,
...
)
Returns a Seurat
object
A Seurat object
Arguments passed to other methods
Which assay to use. If NULL, use the default assay
Number of singular values to compute
Scale cell embeddings within each component to mean 0 and SD 1 (default TRUE).
Key for dimension reduction object
Clipping value for cell embeddings. Default (NULL) is no clipping.
Print messages
work parameter for irlba
.
Working subspace dimension, larger values can speed convergence at the
cost of more memory use.
Tolerance (tol) parameter for irlba
. Larger
values speed up convergence due to greater amount of allowed error.
Which features to use. If NULL, use variable features
Name for stored dimension reduction object. Default 'svd'
x <- matrix(data = rnorm(100), ncol = 10)
RunSVD(x)
RunSVD(atac_small[['peaks']])
RunSVD(atac_small)
Run the code above in your browser using DataLab