Learn R Programming

Signac (version 1.14.0)

RunTFIDF: Compute the term-frequency inverse-document-frequency

Description

Run term frequency inverse document frequency (TF-IDF) normalization on a matrix.

Usage

RunTFIDF(object, ...)

# S3 method for default RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )

# S3 method for Assay RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )

# S3 method for StdAssay RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )

# S3 method for Seurat RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, idf = NULL, verbose = TRUE, ... )

Value

Returns a Seurat object

Arguments

object

A Seurat object

...

Arguments passed to other methods

assay

Name of assay to use

method

Which TF-IDF implementation to use. Choice of:

  • 1: The TF-IDF implementation used by Stuart & Butler et al. 2019 (tools:::Rd_expr_doi("10.1101/460147")). This computes \(\log(TF \times IDF)\).

  • 2: The TF-IDF implementation used by Cusanovich & Hill et al. 2018 (tools:::Rd_expr_doi("10.1016/j.cell.2018.06.052")). This computes \(TF \times (\log(IDF))\).

  • 3: The log-TF method used by Andrew Hill. This computes \(\log(TF) \times \log(IDF)\).

  • 4: The 10x Genomics method (no TF normalization). This computes \(IDF\).

scale.factor

Which scale factor to use. Default is 10000.

idf

A precomputed IDF vector to use. If NULL, compute based on the input data matrix.

verbose

Print progress

Details

Four different TF-IDF methods are implemented. We recommend using method 1 (the default).

References

https://en.wikipedia.org/wiki/Latent_semantic_analysis#Latent_semantic_indexing

Examples

Run this code
mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5)
RunTFIDF(object = mat)
RunTFIDF(atac_small[['peaks']])
RunTFIDF(atac_small[['peaks']])
RunTFIDF(object = atac_small)

Run the code above in your browser using DataLab