# NOT RUN {
Design <- data.frame(N = c(10, 20, 30))
Generate <- function(condition, fixed_objects = NULL) {
dat <- with(condition, rnorm(N, 10, 5)) # distributed N(10, 5)
dat
}
Analyse <- function(condition, dat, fixed_objects = NULL) {
ret <- mean(dat) # mean of the sample data vector
ret
}
# }
# NOT RUN {
# run the simulation
runSimulation(design=Design, replications=50,
generate=Generate, analyse=Analyse,
summarise=NA, save_results=TRUE,
save_details = list(save_results_dirname='simresults'))
Summarise <- function(condition, results, fixed_objects = NULL){
ret <- c(mu=mean(results), SE=sd(results))
ret
}
res <- reSummarise(Summarise, dir = 'simresults/')
res
Summarise2 <- function(condition, results, fixed_objects = NULL) {
mean(results)
}
res2 <- reSummarise(Summarise2, dir = 'simresults/')
res2
SimClean('simresults/')
# }
# NOT RUN {
###
# similar to above, but using objects defined in workspace
results <- runSimulation(design=Design, replications=50,
generate=Generate, analyse=Analyse)
str(results)
Summarise <- function(condition, results, fixed_objects = NULL){
ret <- c(mu=mean(results), SE=sd(results))
ret
}
res <- reSummarise(Summarise, results=results, Design=Design)
res
res <- reSummarise(Summarise, results=results, boot_method = 'basic')
res
###
# Also similar, but storing the results within the summarised simulation
Summarise <- function(condition, results, fixed_objects = NULL){
ret <- c(mu=mean(results), SE=sd(results))
ret
}
res <- runSimulation(design=Design, replications=50, store_results = TRUE,
generate=Generate, analyse=Analyse, summarise=Summarise)
res
# internal results stored
results <- SimExtract(res, what = 'results')
str(results)
# pass SimDesign object to results
res <- reSummarise(Summarise, results=res, boot_method = 'basic')
res
# }
Run the code above in your browser using DataLab