Union two or more SparkDataFrames by row. As in R's rbind
, this method
requires that the input SparkDataFrames have the same column names.
rbind(..., deparse.level = 1)# S4 method for SparkDataFrame
rbind(x, ..., deparse.level = 1)
additional SparkDataFrame(s).
currently not used (put here to match the signature of the base implementation).
a SparkDataFrame.
A SparkDataFrame containing the result of the union.
Note: This does not remove duplicate rows across the two SparkDataFrames.
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, alias
,
arrange
, as.data.frame
,
attach,SparkDataFrame-method
,
broadcast
, cache
,
checkpoint
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, cube
,
dapplyCollect
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, except
,
explain
, filter
,
first
, gapplyCollect
,
gapply
, getNumPartitions
,
group_by
, head
,
hint
, histogram
,
insertInto
, intersect
,
isLocal
, isStreaming
,
join
, limit
,
localCheckpoint
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, randomSplit
,
registerTempTable
, rename
,
repartition
, rollup
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
summary
, take
,
toJSON
, unionByName
,
union
, unpersist
,
withColumn
, withWatermark
,
with
, write.df
,
write.jdbc
, write.json
,
write.orc
, write.parquet
,
write.stream
, write.text
# NOT RUN {
sparkR.session()
unions <- rbind(df, df2, df3, df4)
# }
Run the code above in your browser using DataLab