Learn R Programming

SparkR (version 3.1.2)

agg: summarize

Description

Aggregates on the entire SparkDataFrame without groups. The resulting SparkDataFrame will also contain the grouping columns.

Compute aggregates by specifying a list of columns

Usage

agg(x, ...)

summarize(x, ...)

# S4 method for GroupedData agg(x, ...)

# S4 method for GroupedData summarize(x, ...)

# S4 method for SparkDataFrame agg(x, ...)

# S4 method for SparkDataFrame summarize(x, ...)

Arguments

x

a SparkDataFrame or GroupedData.

...

further arguments to be passed to or from other methods.

Value

A SparkDataFrame.

Details

df2 <- agg(df, <column> = <aggFunction>) df2 <- agg(df, newColName = aggFunction(column))

See Also

Other SparkDataFrame functions: SparkDataFrame-class, alias(), arrange(), as.data.frame(), attach,SparkDataFrame-method, broadcast(), cache(), checkpoint(), coalesce(), collect(), colnames(), coltypes(), createOrReplaceTempView(), crossJoin(), cube(), dapplyCollect(), dapply(), describe(), dim(), distinct(), dropDuplicates(), dropna(), drop(), dtypes(), exceptAll(), except(), explain(), filter(), first(), gapplyCollect(), gapply(), getNumPartitions(), group_by(), head(), hint(), histogram(), insertInto(), intersectAll(), intersect(), isLocal(), isStreaming(), join(), limit(), localCheckpoint(), merge(), mutate(), ncol(), nrow(), persist(), printSchema(), randomSplit(), rbind(), rename(), repartitionByRange(), repartition(), rollup(), sample(), saveAsTable(), schema(), selectExpr(), select(), showDF(), show(), storageLevel(), str(), subset(), summary(), take(), toJSON(), unionAll(), unionByName(), union(), unpersist(), withColumn(), withWatermark(), with(), write.df(), write.jdbc(), write.json(), write.orc(), write.parquet(), write.stream(), write.text()

Examples

Run this code
# NOT RUN {
 df2 <- agg(df, age = "sum")  # new column name will be created as 'SUM(age#0)'
 df3 <- agg(df, ageSum = sum(df$age)) # Creates a new column named ageSum
 df4 <- summarize(df, ageSum = max(df$age))
# }

Run the code above in your browser using DataLab