The following options for repartition by range are possible:
1. Return a new SparkDataFrame range partitioned by
the given columns into numPartitions
.
2. Return a new SparkDataFrame range partitioned by the given column(s),
using spark.sql.shuffle.partitions
as number of partitions.
At least one partition-by expression must be specified. When no explicit sort order is specified, "ascending nulls first" is assumed.
repartitionByRange(x, ...)# S4 method for SparkDataFrame
repartitionByRange(x, numPartitions = NULL, col = NULL, ...)
a SparkDataFrame.
additional column(s) to be used in the range partitioning.
the number of partitions to use.
the column by which the range partitioning will be performed.
Note that due to performance reasons this method uses sampling to estimate the ranges.
Hence, the output may not be consistent, since sampling can return different values.
The sample size can be controlled by the config
spark.sql.execution.rangeExchange.sampleSizePerPartition
.
Other SparkDataFrame functions:
SparkDataFrame-class
,
agg()
,
alias()
,
arrange()
,
as.data.frame()
,
attach,SparkDataFrame-method
,
broadcast()
,
cache()
,
checkpoint()
,
coalesce()
,
collect()
,
colnames()
,
coltypes()
,
createOrReplaceTempView()
,
crossJoin()
,
cube()
,
dapplyCollect()
,
dapply()
,
describe()
,
dim()
,
distinct()
,
dropDuplicates()
,
dropna()
,
drop()
,
dtypes()
,
exceptAll()
,
except()
,
explain()
,
filter()
,
first()
,
gapplyCollect()
,
gapply()
,
getNumPartitions()
,
group_by()
,
head()
,
hint()
,
histogram()
,
insertInto()
,
intersectAll()
,
intersect()
,
isLocal()
,
isStreaming()
,
join()
,
limit()
,
localCheckpoint()
,
merge()
,
mutate()
,
ncol()
,
nrow()
,
persist()
,
printSchema()
,
randomSplit()
,
rbind()
,
rename()
,
repartition()
,
rollup()
,
sample()
,
saveAsTable()
,
schema()
,
selectExpr()
,
select()
,
showDF()
,
show()
,
storageLevel()
,
str()
,
subset()
,
summary()
,
take()
,
toJSON()
,
unionAll()
,
unionByName()
,
union()
,
unpersist()
,
withColumn()
,
withWatermark()
,
with()
,
write.df()
,
write.jdbc()
,
write.json()
,
write.orc()
,
write.parquet()
,
write.stream()
,
write.text()
# NOT RUN {
sparkR.session()
path <- "path/to/file.json"
df <- read.json(path)
newDF <- repartitionByRange(df, col = df$col1, df$col2)
newDF <- repartitionByRange(df, 3L, col = df$col1, df$col2)
# }
Run the code above in your browser using DataLab