data( "ExampleSpatialVxSet" )
x <- ExampleSpatialVxSet$vx
look <- disk2dsmooth(x,5)
u <- quantile(look,0.99)
sIx <- matrix(0, 100, 100)
sIx[ look > u] <- 1
look2 <- disjointer(sIx)[[1]]
look2 <- flipxy(look2)
tmp <- FeatureAxis(look2)
plot(tmp)
summary(tmp)
if (FALSE) {
data( "pert000" )
data( "pert004" )
data( "ICPg240Locs" )
hold <- make.SpatialVx( pert000, pert004,
loc = ICPg240Locs, projection = TRUE, map = TRUE,
loc.byrow = TRUE,
field.type = "Precipitation", units = "mm/h",
data.name = "Perturbed ICP Cases", obs.name = "pert000",
model.name = "pert004" )
look <- FeatureFinder(hold, smoothpar=10.5)
par(mfrow=c(1,2))
plot(look)
par(mfrow=c(2,2))
image.plot(look$X.labeled)
image.plot(look$Y.labeled)
# The next line will likely be very slow.
look2 <- deltamm(x=look, verbose=TRUE)
image.plot(look2$X.labeled)
image.plot(look2$Y.labeled)
look2$mm.new.labels # the first seven features are matched.
ang1 <- FeatureAxis(look2$X.feats[[1]])
ang2 <- FeatureAxis(look2$Y.feats[[1]])
plot(ang1)
plot(ang2)
summary(ang1)
summary(ang2)
ang3 <- FeatureAxis(look2$X.feats[[4]])
ang4 <- FeatureAxis(look2$Y.feats[[4]])
plot(ang3)
plot(ang4)
summary(ang3)
summary(ang4)
}
Run the code above in your browser using DataLab