The binary location metric proposed in Zhu et al. (2011) is a linear combination of two measures: the amount of overlap between events in two fields, given by distOV
(simply the square root of sum of squared errors between two binary fields), and (if there are events in both fields) the mean error distance described in Peli and Malah (1982); see also Baddeley (1992). The metric can be computed between a forecast field, M1, and the verificaiton field, V, or it can be compared between two foreast models M1 and M2 with reference to V. That is,
metrV(M1,M2) = lam1*distOV(I.M1,I.M2) + lam2*distDV(I.M1,I.M2),
where I.M1 (I.M2) is the binary field determined by M1 >= threshold (M2 >= threshold), distOV(I.M1,I.M2) = sqrt( sum( (I.M1 - I.M2)^2)), distDV(I.M1,I.M2) = abs(distob(I.V,I.M1) - distob(I.V,I.M2)), where distob(A,B) is the mean error distance between A and B, given by:
e(A,B) = 1/(N(A))*sqrt( sum( d(x,B)), where the summation is over all the points x corresponding to events in A, and d(x,B) is the minimum of the shortest distance from the point x to each point in B. e(A,B) is calculated by using the distance transform as calculated by the distmap
function from package spatstat
for computational efficiency.
Note that if there are no events in both fields, then by definition, the term distob(A,B) = 0, and if there are no events in one and only one of the two fields, then a large constant (here, the maximum dimension of the field), is returned. In this way, distob differs from the mean error distance described in Peli and Malah (1982).
If comparing between the verification field and one forecast model, then the distDV term simplifies to just distob(I.V,I.M1).
One final note is that Eq (6) that defines distOV
in Zhu et al. (2011) is correct (or rather, what is used in the paper). It is not, as is stated below Eq (6) in Zhu et al. (2011) the root *mean* square error, but rather the root square error. This function computes Eq (6) as written.