##load data
data(mesa.data.model)
##create a vector dividing data into four seasons
I.season <- matrix(NA,length(mesa.data.model$obs$date),1)
I.season[months(mesa.data.model$obs$date) %in%
c("December","January","February"),1] <- "DJF"
I.season[months(mesa.data.model$obs$date) %in%
c("March","April","May"),1] <- "MAM"
I.season[months(mesa.data.model$obs$date) %in%
c("June","July","August"),1] <- "JJA"
I.season[months(mesa.data.model$obs$date) %in%
c("September","October","November"),1] <- "SON"
I.season <- factor(I.season,levels=c("DJF","MAM","JJA","SON"))
##create a vector dividing data into type (AQS or FIXED)
I.type <- as.character(mesa.data.model$location$type[
mesa.data.model$obs$idx])
##qq-plot of the observations
par(mfrow=c(2,2),mar=c(2,2,2,.5),mgp=c(1.7,.6,0),pty="s")
CVresiduals.qqnorm(mesa.data.model$obs$obs, I.season, I.type)
##scatter plot of the observations against some of the LUR-covariates
LUR <- mesa.data.model$X[[1]][mesa.data.model$obs$idx,]
par(mfrow=c(2,3),mar=c(3,2.5,2,.5),mgp=c(1.7,.6,0),pty="s")
##i=1 is the constant LUR, not very interesting
for(i in 2:4)
CVresiduals.scatter(mesa.data.model$obs$obs, LUR[,i], I.season,
xlab = colnames(LUR)[i])
##and against the temporal trends
for(i in 2:3)
CVresiduals.scatter(mesa.data.model$obs$obs, mesa.data.model$F[,i],
I.season, xlab = colnames(mesa.data.model$F)[i])
Run the code above in your browser using DataLab