Learn R Programming

SpatioTemporal (version 1.1.7)

dropObservations: Drop Observations from a STmodel

Description

Drops observations from STmodel, removing marked observations along with the corresponding locations and recomputes a number of relevant elements.

Usage

dropObservations(STmodel, Ind.cv)

Arguments

STmodel

Model object from which to drop observations.

Ind.cv

A logical vector with one element per observation in STmodel$obs. Observations marked with the TRUE will be dropped from the data structure. Use createCV to create the logical vector.

Value

Returns the STmodel without the observations marked by Ind.cv. Only observed locations are retained.

See Also

Other cross-validation functions: computeLTA, createCV, estimateCV, estimateCV.STmodel, predictCV, predictCV.STmodel, predictNaive

Other STmodel functions: createCV, createDataMatrix, createSTmodel, estimateBetaFields, loglikeST, loglikeSTdim, loglikeSTnaive, predictNaive, processLocation, processLUR, processST, updateCovf, updateSTdataTrend, updateTrend, updateTrend.STdata, updateTrend.STmodel

Examples

Run this code
# NOT RUN {
##load data
data(mesa.model)

##Mark 30% of observations
I <- runif(dim(mesa.model$obs)[1])<.3
##drop these observations
mesa.model.new <- dropObservations(mesa.model, I)

##This reduces the remaining number of observations
print(mesa.model)
print(mesa.model.new)

# }
# NOT RUN {
##create cross validation structure
Icv <- createCV(mesa.model, groups=10)

##drop observations from the second CV group
mesa.model.new <- dropObservations(mesa.model, Icv==2)

##This reduces the remaining number of observations (and locations)
print(mesa.model)
print(mesa.model.new)

# }
# NOT RUN {
# }

Run the code above in your browser using DataLab