powered by
A multivariate outlier plot for each dimension is produced.
plotuniout(x, symb = FALSE, quan = 1/2, alpha = 0.025, bw = FALSE, pch2 = c(3, 1), cex2 = c(0.7, 0.4), col2 = c(1, 1), lcex.fac = 1, ...)
returns the outliers
the square root of the Mahalanobis distance
the Euclidean distance of the scaled data
dataset
if FALSE, only two different symbols (outlier and no outlier) will be used
Number of subsets used for the robust estimation of the covariance matrix. Allowed are values between 0.5 and 1., see covMcd
Maximum thresholding proportion, see arw
if TRUE, symbols are in gray-scale (only if symb=TRUE)
graphical parameters for the points
factor for multiplication of symbol size (only if symb=TRUE)
further graphical parameters for the plot
Peter Filzmoser <P.Filzmoser@tuwien.ac.at> http://cstat.tuwien.ac.at/filz/
C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
arw, covMcd
arw
covMcd
data(moss) el=c("Ag","As","Bi","Cd","Co","Cu","Ni") dat=log10(moss[,el]) ans<-plotuniout(dat,symb=FALSE,cex2=c(0.9,0.1),pch2=c(3,21))
Run the code above in your browser using DataLab