Learn R Programming

StatRank (version 0.0.6)

Estimation.RUM.MultiType.MLE: Performs parameter estimation for a Multitype Random Utility Model

Description

This function supports RUMs 1) Normal 2) Normal with fixed variance (fixed at 1) 3) Exponential

Usage

Estimation.RUM.MultiType.MLE(Data, K = 2, iter = 10, dist, ratio = 0.2, race = FALSE)

Arguments

Data
data in either partial or full rankings
K
number of components in mixture distribution
iter
number of EM iterations to run
dist
underlying distribution. Can be "norm", "norm.fixedvariance", "exp"
ratio
parameter in the algorithm that controls the difference of the starting points, the bigger the ratio the more the distance
race
TRUE if data is sub partial, FALSE (default) if not

Value

results from the inference

Examples

Run this code
Data.Tiny <- matrix(c(1, 2, 3, 3, 2, 1, 1, 2, 3), ncol = 3, byrow = TRUE)
Estimation.RUM.MultiType.MLE(Data.Tiny, K=2, iter = 3, dist= "norm.fixedvariance")

Run the code above in your browser using DataLab