Learn R Programming

StatRank (version 0.0.6)

Estimation.RUM.Nonparametric: Nonparametric RUM Estimator

Description

Given rank data (full, top partial, or sub partial), this function returns an inference object that fits nonparametric latent utilties on the rank data.

Usage

Estimation.RUM.Nonparametric(Data, m, iter = 10, bw = 0.025, utilities.per.agent = 20, race = FALSE)

Arguments

Data
full, top partial, or sub partial rank data
m
number of alternatives
iter
number of EM iterations to run
bw
bandwidth, or smoothing parameter for KDE
utilities.per.agent
Number of utility vector samples that we get per agent. More generally gives a more accurate estimate
race
TRUE if data is sub partial, FALSE (default) if not

Examples

Run this code
data(Data.Test)
Estimation.RUM.Nonparametric(Data.Test, m = 5, iter = 3)

Run the code above in your browser using DataLab