Learn R Programming

⚠️There's a newer version (1.5.8) of this package.Take me there.

StepReg (version 1.3.3)

Stepwise Regression Analysis

Description

Stepwise regression analysis for variable selection can be used to get the best candidate final regression model in univariate or multivariate regression analysis with the 'forward', 'backward' and 'bidirection' steps. Besides, best subset selection is included in this package. Procedure can use Akaike information criterion, corrected Akaike information criterion, Bayesian information criterion, Hannan and Quinn information criterion, corrected Hannan and Quinn information criterion, Schwarz criterion and significance levels as selection criteria. Multicollinearity detection in regression model are performed by checking tolerance value. Continuous variables nested within class effect and weighted stepwise regression are also considered.

Copy Link

Version

Install

install.packages('StepReg')

Monthly Downloads

962

Version

1.3.3

License

GPL (>= 2)

Maintainer

JunhuiLi

Last Published

November 25th, 2019

Functions in StepReg (1.3.3)

bestsubset

Best subset selection
ModelFitStat

calculate model fit statistics
stepOne

Optimized residual models
StepReg-package

Stepwise Regression Analysis
stepwise

Stepwise Regression