Learn R Programming

StepReg (version 1.4.2)

stepOne: Choose the best model in one step

Description

Choose the best model with minimal information criteria statistics in forward selection or maximal ones in backward elimination

Usage

stepOne(findIn, p, n, sigma, tolerance, Ftrace, criteria, Y,X1, X0, k, SST)

Arguments

findIn

Logical value, if FALSE then add independent variable to regression model, otherwise remove independent variable from regression model

p

The number of independent variable entered in regression

n

The sample size

sigma

Pure error variance from full regressoin model for Bayesian information criterion(BIC)

tolerance

Tolerance value for multicollinearity

Ftrace

Statistic of multivariate regression including Wilks` lambda, Pillai trace and Hotelling-lawley trace

criteria

Information criterion including AIC, AICc, BIC, SBC, HQ, HQc and SL

Y

Data set for dependent variable

X1

Data set for independent variables not in regression model

X0

Data set for independent variables entered in regression model

k

Forces the first k effects entered in regression model, and the selection methods are performed on the other effects in the data set

SST

Total sum of squares corrected for the mean for the dependent variable

Value

PIC

P value or Information Criteria statistic value

SEQ

Pointer for independent variable enter or eliminate

SSE

Maximum or minimum of SSE

RkCh

Rank changed or not

Details

This function can compute probability value or information criteria statistics with multivariate and univariate regression using least square method

References

Alsubaihi, A. A., Leeuw, J. D., and Zeileis, A. (2002). Variable selection in multivariable regression using sas/iml. , 07(i12).

Darlington, R. B. (1968). Multiple regression in psychological research and practice. Psychological Bulletin, 69(3), 161.

Hannan, E. J., & Quinn, B. G. (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society, 41(2), 190-195.

Harold Hotelling. (1992). The Generalization of Student's Ratio. Breakthroughs in Statistics. Springer New York.

Hurvich, C. M., & Tsai, C. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297-307.

Judge, & GeorgeG. (1985). The Theory and practice of econometrics /-2nd ed. The Theory and practice of econometrics /. Wiley.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. Mathematical Gazette, 37(1), 123-131.

Mckeon, J. J. (1974). F approximations to the distribution of hotelling's t20. Biometrika, 61(2), 381-383.

Mcquarrie, A. D. R., & Tsai, C. L. (1998). Regression and Time Series Model Selection. Regression and time series model selection /. World Scientific.

Pillai, K. C. S. (2006). Pillai's Trace. Encyclopedia of Statistical Sciences. John Wiley & Sons, Inc.

R.S. Sparks, W. Zucchini, & D. Coutsourides. (1985). On variable selection in multivariate regression. Communication in Statistics- Theory and Methods, 14(7), 1569-1587.

Sawa, T. (1978). Information criteria for discriminating among alternative regression models. Econometrica, 46(6), 1273-1291.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), pags. 15-18.