Learn R Programming

StratifiedSampling package

In this R package, different functions are implemented for selecting samples .

The package contains also some useful functions. Look at the manual of the package for more information.

Installation

CRAN version

install.packages("StratifiedSampling")

Latest version

You can install the latest version of the package StratifiedSampling with the following command:

# install.packages("devtools")
devtools::install_github("Rjauslin/StratifiedSampling")

Optimal transport matching

The package proposes a method to do statistical matching using optimal transport and balanced sampling. For more details see Raphaël Jauslin and Yves Tillé (2021) https://arxiv.org/abs/2105.08379. A complete example on how to use the package to make an optimal statistical transport match can be found in the following vignette:

vignette("ot_matching", package = "StratifiedSampling")

Sequential spatially balanced sampling

The package proposes a method to select a well-spread sample balanced on some auxiliary variables. For more details see Raphaël Jauslin and Yves Tillé (2022) https://arxiv.org/abs/2112.01164. A complete example on how to use the different functions to select a well-spread and balanced sample can be found in the following vignette:

vignette("sequential_balanced", package = "StratifiedSampling")

Simple example on stratified population

Integrating a stratified structure in the population in a sampling design can considerably reduce the variance of the Horvitz-Thompson estimator. We propose in this package different methods to handle the selection of a balanced sample in stratified population. For more details see Raphaël Jauslin, Esther Eustache and Yves Tillé (2021) https://doi.org/10.1007/s42081-021-00134-y.

This basic example shows you how to set up a stratified sampling design. The example is done on the swissmunicipalities dataset from the package sampling.

library(sampling)
library(StratifiedSampling)
#> Le chargement a nécessité le package : Matrix

data(swissmunicipalities)
swiss <- swissmunicipalities
X <- cbind(swiss$HApoly,
        swiss$Surfacesbois,
        swiss$P00BMTOT,
        swiss$P00BWTOT,
        swiss$POPTOT,
        swiss$Pop020,
        swiss$Pop2040,
        swiss$Pop4065,
        swiss$Pop65P,
        swiss$H00PTOT )

X <- X[order(swiss$REG),]
strata <- swiss$REG[order(swiss$REG)]

Strata are NUTS region of the Switzerland. Inclusion probabilities pik is set up equal within strata and such that the sum of the inclusion probabilities within strata is equal to 80.

pik <- sampling::inclusionprobastrata(strata,rep(80,7))

It remains to use the function stratifiedcube().

s <- stratifiedcube(X,strata,pik)

We can check that we have correctly selected the sample. It is balanced and have the right number of units selected in each stratum.

head(s)
#> [1] 0 1 0 0 0 0

sum(s)
#> [1] 560
t(X/pik)%*%s
#>          [,1]
#>  [1,] 4002777
#>  [2,] 1268448
#>  [3,] 3717955
#>  [4,] 3881493
#>  [5,] 7599447
#>  [6,] 1718897
#>  [7,] 2284406
#>  [8,] 2433051
#>  [9,] 1163093
#> [10,] 3280048
t(X/pik)%*%pik
#>          [,1]
#>  [1,] 3998831
#>  [2,] 1270996
#>  [3,] 3567567
#>  [4,] 3720443
#>  [5,] 7288010
#>  [6,] 1665613
#>  [7,] 2141059
#>  [8,] 2362332
#>  [9,] 1119006
#> [10,] 3115399

Xcat <- disj(strata)

t(Xcat)%*%s
#>      [,1]
#> [1,]   80
#> [2,]   80
#> [3,]   80
#> [4,]   80
#> [5,]   80
#> [6,]   80
#> [7,]   80
t(Xcat)%*%pik
#>      [,1]
#> [1,]   80
#> [2,]   80
#> [3,]   80
#> [4,]   80
#> [5,]   80
#> [6,]   80
#> [7,]   80

Copy Link

Version

Install

install.packages('StratifiedSampling')

Monthly Downloads

212

Version

0.4.2

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Raphael Jauslin

Last Published

January 31st, 2025

Functions in StratifiedSampling (0.4.2)

landingRM

Landing by suppression of variables
osod

One-step One Decision sampling method
maxentpi2

Joint inclusion probabilities of maximum entropy.
findB

Find best sub-matrix B in stratifiedcube
fbs

Fast Balanced Sampling
otmatch

Statistical Matching using Optimal transport
pikfromq

pik from q
sys_deville

Deville's systematic
sys_devillepi2

Second order inclusion probabilities of Deville's systematic
ffphase

Fast flight phase of the cube method
vDBS

Variance Estimation for Doubly Balanced Sample.
vApp

Approximated variance for balanced sample
sfromq

s from q
piktfrompik

pikt from pik
qfromw

q from w
varApp

Approximated variance for balanced sampling
vEst

Variance Estimation for balanced sample
stratifiedcube

Stratified Sampling
varEst

Estimator of the approximated variance for balanced sampling
disj

Disjunctive
c_bound2

C bound
cps

Conditional Poisson sampling design
bsmatch

Statistical matching using optimal transport and balanced sampling
calibRaking

Calibration using raking ratio
balseq

Sequential balanced sampling
distUnitk

Squared Euclidean distances of the unit k.
harmonize

Harmonization by calibration
c_bound

C bound
balstrat

Balanced Stratification
disjMatrix

Disjunctive for matrix
inclprob

Inclusion Probabilities
gencalibRaking

Generalized calibration using raking ratio
ncat

Number of categories