Learn R Programming

SubLasso (version 1.0)

SubLasso-package: SubLasso package

Description

SubLasso package

Arguments

Details

Package:
SubLasso
Type:
Package
Version:
1.0
Date:
2013-10-01
License:
GPL-2
A convient procedure for microarray studies. It can do feature selection and classification simultaneously for binary outcomes . K-folds cross validation results were returned for users. Users needn't to adjust the tune parameter and can fix any features that they desire to keep in the model.

References

1. Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology 2005, 3:Article3. 2. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America 2001, 98(9):5116-5121. 3. Culhane AC, Perriere G, Considine EC, Cotter TG, Higgins DG: Between-group analysis of microarray data. Bioinformatics 2002, 18(12):1600-1608. 4. Parodi S, Muselli M, Fontana V, Bonassi S: ROC curves are a suitable and flexible tool for the analysis of gene expression profiles. Cytogenetic and genome research 2003, 101(1):90-91. 5. Wang Q, Wei F, Lv G, Li C, Liu T, Hadjipanayis CG, Zhang G, Hao C, Bellail AC: The association of TP53 mutations with the resistance of colorectal carcinoma to the insulin-like growth factor-1 receptor inhibitor picropodophyllin. Bmc Cancer 2013, 13(1):521. 6. Cortot AB, Younes M, Martel-Planche G, Guibert B, Isaac S, Souquet PJ, Commo F, Girard P, Fouret P, Brambilla E et al: Mutation of TP53 and Alteration of p14 Expression in EGFR- and KRAS-Mutated Lung Adenocarcinomas. Clinical lung cancer 2013. 7. Singamsetty GK, Malempati S, Bhogadhi S, Kondreddy R, Govatati S, Tangudu NK, Govatati S, Kuraganti AK, Bhanoori M, Kassetty K: TP53 alterations and colorectal cancer predisposition in south Indian population: A case-control study. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2013. 8. Chung R, Whaley J, Kley N, Anderson K, Louis D, Menon A, Hettlich C, Freiman R, Hedley-Whyte ET, Martuza R et al: TP53 gene mutations and 17p deletions in human astrocytomas. Genes, chromosomes & cancer 1991, 3(5):323-331. 9. Eeles RA, Bartkova J, Lane DP, Bartek J: The role of TP53 in breast cancer development. Cancer surveys 1993, 18:57-75. 10. Ding J, Shi J, Wu FX: SVM-RFE based feature selection for tandem mass spectrum quality assessment. International journal of data mining and bioinformatics 2011, 5(1):73-88. 11. Mundra PA, Rajapakse JC: SVM-RFE with MRMR filter for gene selection. IEEE transactions on nanobioscience 2010, 9(1):31-37. 12. Tang Y, Zhang YQ, Huang Z: Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM 2007, 4(3):365-381. 13. Zhou X, Tuck DP: MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics 2007, 23(9):1106-1114. 14. Niijima S, Kuhara S: Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE. BMC bioinformatics 2006, 7:543. 15. Ding Y, Wilkins D: Improving the performance of SVM-RFE to select genes in microarray data. BMC bioinformatics 2006, 7 Suppl 2:S12. 16. Duan KB, Rajapakse JC, Wang H, Azuaje F: Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE transactions on nanobioscience 2005, 4(3):228-234. 17. Tibshirani R: Regression shrinkage and selection via the Lasso. J Roy Stat Soc B Met 1996, 58(1):267-288. 18. Friedman J, Hastie T, Tibshirani R: Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw 2010, 33(1):1-22.