# NOT RUN {
# Compute R2_H given the marginals specified as the pi's
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.2619048, pi1_0_=0.2857143,
pi_1_1=0.6372549, pi_1_0=0.07843137, pi0_1_=0.1349206, pi_0_1=0.127451,
Seed=1, Monotonicity=c("General"), M=1000)
# Obtain a causal diagram that provides the medians of the
# correlations between the counterfactuals for the range
# of R2_H values between 0.1 and 1
# Assume no monotonicty
CausalDiagramBinBin(x=ICA, Min=0.1, Max=1, Monotonicity="No")
# Assume monotonicty for S
CausalDiagramBinBin(x=ICA, Min=0.1, Max=1, Monotonicity="Surr.Endp")
# Now only consider the results that were obtained when
# monotonicity was assumed for the true endpoint
CausalDiagramBinBin(x=ICA, Values="ORs", Theta_T0S0=2.156, Theta_T1S1=10,
Min=0, Max=1, Monotonicity="True.Endp")
# }
Run the code above in your browser using DataLab