if (FALSE) {
# Specify matrix Sigma (var-cavar matrix T_0, T_1, S1_0, S1_1, ...)
# here for 1 true endpoint and 3 surrogates
s<-matrix(rep(NA, times=64),8)
s[1,1] <- 450; s[2,2] <- 413.5; s[3,3] <- 174.2; s[4,4] <- 157.5;
s[5,5] <- 244.0; s[6,6] <- 229.99; s[7,7] <- 294.2; s[8,8] <- 302.5
s[3,1] <- 160.8; s[5,1] <- 208.5; s[7,1] <- 268.4
s[4,2] <- 124.6; s[6,2] <- 212.3; s[8,2] <- 287.1
s[5,3] <- 160.3; s[7,3] <- 142.8
s[6,4] <- 134.3; s[8,4] <- 130.4
s[7,5] <- 209.3;
s[8,6] <- 214.7
s[upper.tri(s)] = t(s)[upper.tri(s)]
# Marix looks like (NA indicates unidentified covariances):
# T_0 T_1 S1_0 S1_1 S2_0 S2_1 S2_0 S2_1
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
# T_0 [1,] 450.0 NA 160.8 NA 208.5 NA 268.4 NA
# T_1 [2,] NA 413.5 NA 124.6 NA 212.30 NA 287.1
# S1_0 [3,] 160.8 NA 174.2 NA 160.3 NA 142.8 NA
# S1_1 [4,] NA 124.6 NA 157.5 NA 134.30 NA 130.4
# S2_0 [5,] 208.5 NA 160.3 NA 244.0 NA 209.3 NA
# S2_1 [6,] NA 212.3 NA 134.3 NA 229.99 NA 214.7
# S3_0 [7,] 268.4 NA 142.8 NA 209.3 NA 294.2 NA
# S3_1 [8,] NA 287.1 NA 130.4 NA 214.70 NA 302.5
# Conduct analysis
ICA <- ICA.ContCont.MultS.PC(M=1000, N=200, Show.Progress = TRUE,
Sigma=s, Seed=c(123))
# Explore results
summary(ICA)
plot(ICA)
}
Run the code above in your browser using DataLab