if (FALSE)  # Time consuming (>5sec) code part
# Simulate the data:
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8,
             Seed=123, Model="Full")
             
# create a binary true and ordinal surrogate outcome
Data.Observed.MTS$True<-findInterval(Data.Observed.MTS$True, 
        c(quantile(Data.Observed.MTS$True,0.5)))
Data.Observed.MTS$Surr<-findInterval(Data.Observed.MTS$Surr, 
        c(quantile(Data.Observed.MTS$Surr,0.333),quantile(Data.Observed.MTS$Surr,0.666)))
# Assess surrogacy based on a full fixed-effect model
# in the information-theoretic framework for a binary surrogate and ordinal true outcome:
SurEval <- FixedDiscrDiscrIT(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat,
Trial.ID=Trial.ID, Setting="ordbin")
## Request trial-level surrogacy plot. In the trial-level plot,
## make the size of the circles proportional to the number of patients in a trial:
plot(SurEval, Weighted=FALSE)
Run the code above in your browser using DataLab