# Define input for analysis using the Schizo dataset,
# with S=BPRS and T = PANSS.
# For each of the identifiable quantities,
# uncertainty is accounted for by specifying a uniform
# distribution with min, max values corresponding to
# the 95% confidence interval of the quantity.
T0S0 <- runif(min = 0.9524, max = 0.9659, n = 1000)
T1S1 <- runif(min = 0.9608, max = 0.9677, n = 1000)
S0S0 <- runif(min=160.811, max=204.5009, n=1000)
S1S1 <- runif(min=168.989, max = 194.219, n=1000)
T0T0 <- runif(min=484.462, max = 616.082, n=1000)
T1T1 <- runif(min=514.279, max = 591.062, n=1000)
Mean_T0 <- runif(min=-13.455, max=-9.489, n=1000)
Mean_T1 <- runif(min=-17.17, max=-14.86, n=1000)
Mean_S0 <- runif(min=-7.789, max=-5.503, n=1000)
Mean_S1 <- runif(min=-9.600, max=-8.276, n=1000)
# Do the ISTE analysis
if (FALSE) {
ISTE <- ISTE.ContCont(Mean_T1=Mean_T1, Mean_T0=Mean_T0,
Mean_S1=Mean_S1, Mean_S0=Mean_S0, N=2128, Delta_S=c(-50:50),
zeta.PI=0.05, PI.Bound=0, Show.Prediction.Plots=TRUE,
Save.Plots="No", T0S0=T0S0, T1S1=T1S1, T0T0=T0T0, T1T1=T1T1,
S0S0=S0S0, S1S1=S1S1)
# Examine results:
summary(ISTE)
# Plots of results.
# Plot ISTE
plot(ISTE)
# Other plots, see plot.ISTE.ContCont for details
plot(ISTE, Outcome="MSE")
plot(ISTE, Outcome="gamma0")
plot(ISTE, Outcome="gamma1")
plot(ISTE, Outcome="Exp.DeltaT")
plot(ISTE, Outcome="Exp.DeltaT.Low.PI")
plot(ISTE, Outcome="Exp.DeltaT.Up.PI")
}
Run the code above in your browser using DataLab