The compute_ICA_BinCont()
function computes the individual causal
association for a fully identified D-vine copula model in the setting with a
continuous surrogate endpoint and a binary true endpoint.
compute_ICA_BinCont(
copula_par,
rotation_par,
copula_family1,
copula_family2 = copula_family1,
n_prec,
q_S0,
q_S1,
marginal_sp_rho = TRUE,
seed = 1
)
(numeric) A Named vector with the following elements:
ICA
Spearman's rho, \(\rho_s (\Delta S, \Delta T)\) (if asked)
Kendall's tau, \(\tau (\Delta S, \Delta T)\) (if asked)
Marginal association parameters in terms of Spearman's rho: $$(\rho_s(S_0, S_1), \rho_s(S_0, T_0), \rho_s(S_0, T_1), \rho_s(S_1, T_0), \rho_s(S_0, S_1), \rho_s(T_0, T_1)$$
Parameter vector for the sequence of bivariate copulas that
define the D-vine copula. The elements of copula_par
correspond to
\((c_{12}, c_{23}, c_{34}, c_{13;2}, c_{24;3}, c_{14;23})\).
Vector of rotation parameters for the sequence of
bivariate copulas that define the D-vine copula. The elements of
rotation_par
correspond to \((c_{12}, c_{23}, c_{34}, c_{13;2},
c_{24;3}, c_{14;23})\).
Copula family of \(c_{12}\) and \(c_{34}\). For the
possible options, see loglik_copula_scale()
. The elements of
copula_family
correspond to \((c_{12}, c_{34})\).
Copula family of the other bivariate copulas. For the
possible options, see loglik_copula_scale()
. The elements of
copula_family2
correspond to \((c_{23}, c_{13;2}, c_{24;3}, c_{14;23})\).
Number of Monte Carlo samples for the computation of the mutual information.
Quantile function for the distribution of \(S_0\).
Quantile function for the distribution of \(S_1\).
(boolean) Compute the sample Spearman correlation
matrix? Defaults to TRUE
.
Seed for Monte Carlo sampling. This seed does not affect the global environment.