continuous_continuous_loglik() computes the observed-data loglikelihood for a
bivariate copula model with two continuous endpoints.
continuous_continuous_loglik(
para,
X,
Y,
copula_family,
marginal_X,
marginal_Y,
return_sum = TRUE
)(numeric) loglikelihood value evaluated in para.
Parameter vector. The parameters are ordered as follows:
para[1:p1]: Parameters for the distribution of X as specified in
marginal_X.
para[(p1 + 1):(p1 + p2)]: Parameters for the distribution of Y as specified in
marginal_Y.
para[p1 + p2 + 1]: copula parameter
First variable (Continuous)
Second variable (Continuous)
Copula family, one of the following:
"clayton"
"frank"
"gumbel"
"gaussian"
List with the following three elements (in order):
Density function with first argument x and second argument para the parameter
vector for this distribution.
Distribution function with first argument x and second argument para the parameter
vector for this distribution.
Inverse distribution function with first argument p and second argument para the parameter
vector for this distribution.
The number of elements in para.
A vector of starting values for para.
Return the sum of the individual loglikelihoods? If FALSE,
a vector with the individual loglikelihood contributions is returned.