fit_copula_ContCont() fits the continuous-continuous vine copula model. See
Details for more information about this model.
fit_copula_ContCont(
data,
copula_family,
marginal_S0,
marginal_S1,
marginal_T0,
marginal_T1,
start_copula,
method = "BFGS",
...
)Returns an S3 object that can be used to perform the sensitivity
analysis with sensitivity_analysis_copula().
data frame with three columns in the following order: surrogate
endpoint, true endpoint, and treatment indicator (0/1 coding). Ordinal endpoints
should be integers starting from 1.
One of the following parametric copula families:
"clayton", "frank", "gaussian", or "gumbel". The first element in
copula_family corresponds to the control group, the second to the
experimental group.
List with the following three elements (in order):
Density function with first argument x and second argument para the parameter
vector for this distribution.
Distribution function with first argument x and second argument para the parameter
vector for this distribution.
Inverse distribution function with first argument p and second argument para the parameter
vector for this distribution.
The number of elements in para.
A vector of starting values for para.
Starting value for the copula parameter.
Optimization algorithm for maximizing the objective function.
For all options, see ?maxLik::maxLik. Defaults to "BFGS".
Extra argument to pass onto maxLik::maxLik
Florian Stijven
sensitivity_analysis_copula(), print.vine_copula_fit(),
plot.vine_copula_fit()