fit_copula_ContCont()
fits the continuous-continuous vine copula model. See
Details for more information about this model.
fit_copula_ContCont(
data,
copula_family,
marginal_S0,
marginal_S1,
marginal_T0,
marginal_T1,
start_copula,
method = "BFGS",
...
)
Returns an S3 object that can be used to perform the sensitivity
analysis with sensitivity_analysis_copula()
.
data frame with three columns in the following order: surrogate
endpoint, true endpoint, and treatment indicator (0/1 coding). Ordinal endpoints
should be integers starting from 1
.
One of the following parametric copula families:
"clayton"
, "frank"
, "gaussian"
, or "gumbel"
. The first element in
copula_family
corresponds to the control group, the second to the
experimental group.
List with the following three elements (in order):
Density function with first argument x
and second argument para
the parameter
vector for this distribution.
Distribution function with first argument x
and second argument para
the parameter
vector for this distribution.
Inverse distribution function with first argument p
and second argument para
the parameter
vector for this distribution.
The number of elements in para
.
A vector of starting values for para
.
Starting value for the copula parameter.
Optimization algorithm for maximizing the objective function.
For all options, see ?maxLik::maxLik
. Defaults to "BFGS"
.
Extra argument to pass onto maxLik::maxLik
Florian Stijven
sensitivity_analysis_copula()
, print.vine_copula_fit()
,
plot.vine_copula_fit()