log_likelihood_copula_model()
computes the loglikelihood for a given
bivariate copula model and data set while allowin for right-censoring of both
outcome variables.
log_likelihood_copula_model(
theta,
X,
Y,
d1,
d2,
copula_family,
cdf_X,
cdf_Y,
pdf_X,
pdf_Y,
return_sum = TRUE
)
Loglikelihood of the bivariate copula model evaluated in the observed data.
Copula parameter
Numeric vector corresponding to first outcome variable.
Numeric vector corresponding to second outcome variable.
An integer vector. Indicates whether first variable is observed or right-censored,
d1[i] = 1
if u[i]
corresponds to non-censored value
d1[i] = 0
if u[i]
corresponds to right-censored value
d1[i] = -1
if u[i]
corresponds to left-censored value
An integer vector. Indicates whether first variable is observed or right-censored,
d2[i] = 1
if v[i]
corresponds to non-censored value
d2[i] = 0
if v[i]
corresponds to right-censored value
d2[i] = -1
if v[i]
corresponds to left-censored value
Copula family, one of the following:
"clayton"
"frank"
"gumbel"
"gaussian"
Distribution function for the first outcome variable.
Distribution function for the second outcome variable.
Density function for the first outcome variable.
Density function for the second outcome variable.
Return the sum of the individual loglikelihoods? If FALSE
,
a vector with the individual loglikelihood contributions is returned.