Learn R Programming

Surrogate (version 3.3.3)

sample_dvine: Sample copula data from a given four-dimensional D-vine copula

Description

sample_dvine() is a helper function that samples copula data from a given D-vine copula. See details for more information on the parameterization of the D-vine copula.

Usage

sample_dvine(
  copula_par,
  rotation_par,
  copula_family1,
  copula_family2 = copula_family1,
  n
)

Value

A \(n \times 4\) matrix where each row corresponds to one sampled vector and the columns correspond to \(U_1\), \(U_2\), \(U_3\), and \(U_4\).

Arguments

copula_par

Parameter vector for the sequence of bivariate copulas that define the D-vine copula. The elements of copula_par correspond to \((c_{12}, c_{23}, c_{34}, c_{13;2}, c_{24;3}, c_{14;23})\).

rotation_par

Vector of rotation parameters for the sequence of bivariate copulas that define the D-vine copula. The elements of rotation_par correspond to \((c_{12}, c_{23}, c_{34}, c_{13;2}, c_{24;3}, c_{14;23})\).

copula_family1

Copula family of \(c_{12}\) and \(c_{34}\). For the possible options, see loglik_copula_scale(). The elements of copula_family correspond to \((c_{12}, c_{34})\).

copula_family2

Copula family of the other bivariate copulas. For the possible options, see loglik_copula_scale(). The elements of copula_family2 correspond to \((c_{23}, c_{13;2}, c_{24;3}, c_{14;23})\).

n

Number of samples to be taken from the D-vine copula.

D-vine Copula

Let \(\boldsymbol{U} = (U_1, U_2, U_3, U_4)'\) be a random vector with uniform margins. The corresponding distribution function is then a 4-dimensional copula. A D-vine copula as a family of \(k\)-dimensional copulas. Indeed, a D-vine copula is a \(k\)-dimensional copula that is constructed from a particular product of bivariate copula densities. In this function, only 4-dimensional copula densities are considered. Under the simplifying assumption, the 4-dimensional D-vine copula density is the product of the following bivariate copula densities:

  • \(c_{12}\), \(c_{23}\), and \(c_{34}\)

  • \(c_{13;2}\) and \(c_{24;3}\)

  • \(c_{14;23}\)