Learn R Programming

SurvBoost

SurvBoost

High dimensional variable selection method for stratified proportional hazards model. Implementing an extension of gradient boosting methods applied to survival data, incorporating stratification to relax the proportional hazards assumption in many cases.

Installation

In order to install the package, several other R packages must be installed. The code relies on Rcpp, RcppArmadillo, and RcppParallel in order to improve computational speed. Additionally the survival package is used for simulation and post selection inference and will be required for installation.

The following line of R code installs the package from CRAN:

install.packages("SurvBoost")

# Or you can also install the package from github: 
install.packages("devtools")
devtools::install_github("EmilyLMorris/survBoost")

Example

Simple example of variable selection:

# Using fixed number of iterations: 
boosting_core(Surv(time,delta) ~ strata(strata_idx) + V1 + V2 + V3 + V4 + V5, 
              data, rate=0.1, control=500) 

# Specifying the number of variables to select: 
boosting_core(formula, data, rate=0.1, control_method="num_selected", control_parameter=5)

Check whether it is appropriate to stratify with a certain variable:

strata.boosting(data$strata_variable, data$time)

Plot the coefficient paths:

plot.boosting(boosting_core.output, type="coefficients")

Methods description

SurvBoost: An R Package for High-Dimensional Variable Selection in the Stratified Proportional Hazards Model via Gradient Boosting

Copy Link

Version

Install

install.packages('SurvBoost')

Monthly Downloads

24

Version

0.1.2

License

GPL-3

Maintainer

Emily Morris

Last Published

September 20th, 2019

Functions in SurvBoost (0.1.2)

strata.boosting

Stratification function
plot.boosting

Boosting plot function
boosting_core

Boosting core function
predict.boosting

Boosting predict function
inference.boosting

Boosting inference function
print.boosting

Prints the call and coefficients from boosting model selection
simulate_survival_cox

Simulating survival data
summary.boosting

Summary of boosting model selection