# NOT RUN {
#############################################################################
# EXAMPLE 1: ordered data - Partial credit model
#############################################################################
data( data.gpcm )
# Model 1: partial credit model
mod1 <- TAM::tam.mml( resp=data.gpcm,control=list( maxiter=200) )
summary(mod1)
## Item Parameters -A*Xsi
## item N M AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1
## 1 Comfort 392 0.880 -1.302 1.154 3.881 1 2 3
## 2 Work 392 1.278 -1.706 -0.847 0.833 1 2 3
## 3 Benefit 392 1.163 -1.233 -0.404 1.806 1 2 3
# Calculation of Thurstonian thresholds
TAM::tam.threshold(mod1)
## Cat1 Cat2 Cat3
## Comfort -1.325226 2.0717468 3.139801
## Work -1.777679 0.6459045 1.971222
## Benefit -1.343536 0.7491760 2.403168
# }
# NOT RUN {
#############################################################################
# EXAMPLE 2: Multidimensional model data.math
#############################################################################
library(sirt)
data(data.math, package="sirt")
dat <- data.math$data
# select items
items1 <- grep("M[A-D]", colnames(dat), value=TRUE)
items2 <- grep("M[H-I]", colnames(dat), value=TRUE)
# select dataset
dat <- dat[ c(items1,items2)]
# create Q-matrix
Q <- matrix( 0, nrow=ncol(dat), ncol=2 )
Q[ seq(1,length(items1) ), 1 ] <- 1
Q[ length(items1) + seq(1,length(items2) ), 2 ] <- 1
# fit two-dimensional model
mod1 <- TAM::tam.mml( dat, Q=Q )
# compute thresholds (specify a probability level of .625)
tmod1 <- TAM::tam.threshold( mod1, prob.lvl=.625 )
#############################################################################
# EXAMPLE 3: Creating Wright maps with the WrightMap package
#############################################################################
library(WrightMap)
# For conducting Wright maps in combination with TAM, see
# http://wrightmap.org/post/100850738072/using-wrightmap-with-the-tam-package
data(sim.rasch)
dat <- sim.rasch
# estimate Rasch model in TAM
mod1 <- TAM::tam.mml(dat)
summary(mod1)
#--- A: creating a Wright map with WLEs
# compute WLE
wlemod1 <- TAM::tam.wle(mod1)$theta
# extract thresholds
tmod1 <- TAM::tam.threshold(mod1)
# create Wright map
WrightMap::wrightMap( thetas=wlemod1, thresholds=tmod1, label.items.srt=-90)
#--- B: creating a Wright Map with population distribution
# extract ability distribution and replicate observations
uni.proficiency <- rep( mod1$theta[,1], round( mod1$pi.k * mod1$ic$n) )
# draw WrightMap
WrightMap::wrightMap( thetas=uni.proficiency, thresholds=tmod1, label.items.rows=3)
# }
Run the code above in your browser using DataLab