Learn R Programming

TCGAbiolinks (version 1.2.5)

calculate.pvalues: Calculate pvalues

Description

Calculate pvalues using wilcoxon test

Usage

calculate.pvalues(data, groupCol = NULL, group1 = NULL, group2 = NULL, paired = FALSE, method = "BH", exact = TRUE, cores = 1)

Arguments

data
SummarizedExperiment obtained from the TCGAPrepare
groupCol
Columns with the groups inside the SummarizedExperiment object. (This will be obtained by the function colData(data))
group1
In case our object has more than 2 groups, you should set the groups
group2
In case our object has more than 2 groups, you should set the groups
paired
Do a paired wilcoxon test? Default: True
method
P-value adjustment method. Default:"BH" Benjamini-Hochberg
exact
Do a exact wilcoxon test? Default: True
cores
Number of cores to be used

Value

Data frame with cols p values/p values adjustedData frame with two cols p-values/p-values adjusted

Details

Verify if the data is significant between two groups. For the methylation we search for probes that have a difference in the mean methylation and also a significant value. Input: A SummarizedExperiment object that will be used to compared two groups with wilcoxon test, a boolean value to do a paired or non-paired test Output: p-values (non-adj/adj) histograms, p-values (non-adj/adj)

Examples

Run this code
## Not run: 
# nrows <- 200; ncols <- 20
# counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
# rowRanges <- GenomicRanges::GRanges(rep(c("chr1", "chr2"), c(50, 150)),
#                    IRanges::IRanges(floor(runif(200, 1e5, 1e6)), width=100),
#                     strand=sample(c("+", "-"), 200, TRUE),
#                     feature_id=sprintf("ID%03d", 1:200))
# colData <- S4Vectors::DataFrame(Treatment=rep(c("ChIP", "Input"), 10),
#                     row.names=LETTERS[1:20],
#                     group=rep(c("group1","group2"),c(10,10)))
# data <- SummarizedExperiment::SummarizedExperiment(
#          assays=S4Vectors::SimpleList(counts=counts),
#          rowRanges=rowRanges,
#          colData=colData)
# data <- calculate.pvalues(data,"group")
# ## End(Not run)

Run the code above in your browser using DataLab