## Generate data: 3 clusters
n <- 1200 #sample size
Neach <- floor(n / 4)
X1 <- cbind(rnorm(Neach, 1, .8), rnorm(Neach, 5, 0.8))
X2 <- cbind(rnorm(Neach, 3.5, .8), rnorm(Neach, 5, 0.8))
X3 <- cbind(rnorm(Neach, 6, 1), rnorm(Neach, 1, 1))
X <- rbind(X1, X2, X3)
k <- 100 #parameter of knn
## Density clustering using knn and kde
Tree <- clusterTree(X, k, density = "knn")
TreeKDE <- clusterTree(X, k, h = 0.3, density = "kde")
par(mfrow = c(2, 3))
plot(X, pch = 19, cex = 0.6)
# plot lambda trees
plot(Tree, type = "lambda", main = "lambda Tree (knn)")
plot(TreeKDE, type = "lambda", main = "lambda Tree (kde)")
# plot clusters
plot(X, pch = 19, cex = 0.6, main = "cluster labels")
for (i in Tree[["id"]]){
points(matrix(X[Tree[["DataPoints"]][[i]],],ncol = 2), col = i, pch = 19,
cex = 0.6)
}
#plot kappa trees
plot(Tree, type = "kappa", main = "kappa Tree (knn)")
plot(TreeKDE, type = "kappa", main = "kappa Tree (kde)")
Run the code above in your browser using DataLab