#For Bayesian optimal interval (BOIN) design and Output trial duration as an operating
#characteristics
get_oc_TITE_QuasiBOIN(target=0.3, score=NA,prob=c(0.25,0.30,0.45,0.49,0.53), TITE=FALSE,
ncohort=10, cohortsize=3,startdose=1,maxt=28,accrual=10,
maxpen=NA,alpha1=NA,alpha2=NA,cutoff.eli=0.95, ntrial=10,seed=6)
#For Bayesian optimal interval (BOIN) design and not Output trial duration as an operating
#characteristics
get_oc_TITE_QuasiBOIN(target=0.3, score=NA,prob=c(0.25,0.30,0.45,0.49,0.53), TITE=FALSE,
ncohort=10, cohortsize=3,startdose=1,maxt=NA,accrual=NA,
maxpen=NA,alpha1=NA,alpha2=NA,cutoff.eli=0.95, ntrial=10,seed=6)
#For Generalized Bayesian optimal interval (gBOIN) design and Output trial duration as an
#operating characteristics
target<-0.47/1.5
prob <- matrix(c(0.83, 0.75, 0.62, 0.51, 0.34, 0.19,
0.12, 0.15, 0.18, 0.19, 0.16, 0.11,
0.04, 0.07, 0.11, 0.14, 0.15, 0.11,
0.01, 0.03, 0.09, 0.16, 0.35, 0.59), ncol = 6, byrow = TRUE)
get_oc_TITE_QuasiBOIN(target=target, score=c(0,0.5,1,1.5),prob=prob, TITE=FALSE,ncohort=10,
cohortsize=3,startdose=1,maxt=28,accrual=10, maxpen=NA,alpha1=NA,
alpha2=NA,cutoff.eli=0.95, ntrial=10,seed=6)
#For Generalized Bayesian optimal interval (gBOIN) design and not Output trial duration as
#an operating characteristics
target<-0.47/1.5
prob <- matrix(c(0.83, 0.75, 0.62, 0.51, 0.34, 0.19,
0.12, 0.15, 0.18, 0.19, 0.16, 0.11,
0.04, 0.07, 0.11, 0.14, 0.15, 0.11,
0.01, 0.03, 0.09, 0.16, 0.35, 0.59), ncol = 6, byrow = TRUE)
get_oc_TITE_QuasiBOIN(target=target, score=c(0,0.5,1,1.5),prob=prob, TITE=FALSE,ncohort=10,
cohortsize=3,startdose=1,maxt=NA,accrual=NA, maxpen=NA,alpha1=NA,
alpha2=NA,cutoff.eli=0.95, ntrial=10,seed=6)
#For Time-to-event bayesian optimal interval (TITEBOIN) design
get_oc_TITE_QuasiBOIN(target=0.3, score=NA,prob=c(0.25,0.30,0.45,0.49,0.53), TITE=TRUE,
ncohort=10, cohortsize=3,startdose=1,maxt=28,accrual=10,
maxpen=0.5,alpha1=0.5,alpha2=0.5,cutoff.eli=0.95,
ntrial=10,seed=6)
#For Time-to-event generalized bayesian optimal interval (TITEgBOIN) design
target<-0.47/1.5
prob <- matrix(c(0.83, 0.75, 0.62, 0.51, 0.34, 0.19,
0.12, 0.15, 0.18, 0.19, 0.16, 0.11,
0.04, 0.07, 0.11, 0.14, 0.15, 0.11,
0.01, 0.03, 0.09, 0.16, 0.35, 0.59), ncol = 6, byrow = TRUE)
get_oc_TITE_QuasiBOIN(target=target, score=c(0,0.5,1,1.5),prob=prob, TITE=TRUE,ncohort=10,
cohortsize=3,startdose=1,maxt=28,accrual=10, maxpen=0.5,alpha1=0.5,
alpha2=0.5,cutoff.eli=0.95, ntrial=10,seed=6)
Run the code above in your browser using DataLab