#For Bayesian optimal interval (BOIN) design
target<-0.3
next_TITE_QuasiBOIN(target=target,n=c(3,3,4,4,4,0),npend=NA, y=c(0,0,1,1,1,0), ft=NA,
d=5, maxt=NA,p.saf= 0.6 * target, p.tox = 1.4 * target,elimination=NA,
cutoff.eli = 0.95,extrasafe = FALSE, n.earlystop = 10,
maxpen=NA,print_d = TRUE,gdesign=FALSE)
#For Generalized Bayesian optimal interval (gBOIN) design
target=0.47/1.5
next_TITE_QuasiBOIN(target=target,n=c(3,3,4,4,4,0),npend=NA,
y=c(0, 0, 0.5/1.5, 1.0/1.5, 1.5/1.5, 0),ft=NA, d=5, maxt=NA,
p.saf= 0.6 * target, p.tox = 1.4 * target,elimination=NA,
cutoff.eli = 0.95,extrasafe = FALSE, n.earlystop = 10,
maxpen=NA,print_d = TRUE,gdesign=TRUE)
#For Time-to-event bayesian optimal interval (TITEBOIN) design
target=0.3
next_TITE_QuasiBOIN(target=target,n=c(3,3,4,4,4,0),npend=c(0,0,0,1,2,0), y=c(0,0,1,1,1,0),
ft=c(0, 0, 0, 14, 28, 0),d=5, maxt=28,p.saf= 0.6 * target,
p.tox = 1.4 * target,elimination=NA,cutoff.eli = 0.95,
extrasafe = FALSE, n.earlystop = 10,maxpen=0.5,print_d = TRUE,
gdesign=FALSE)
#For Time-to-event generalized bayesian optimal interval (TITEgBOIN) design
target=0.47/1.5
next_TITE_QuasiBOIN(target=target,n=c(3,3,4,4,4,0),npend=c(0,0,0,1,2,0),
y=c(0, 0, 0.5/1.5, 1.0/1.5, 1.5/1.5, 0),ft=c(0, 0, 0, 14, 28, 0),
d=5, maxt=28,p.saf= 0.6 * target, p.tox = 1.4 * target,
elimination=NA,cutoff.eli = 0.95,extrasafe = FALSE,
n.earlystop = 10,maxpen=0.5,print_d = TRUE,gdesign=TRUE)
Run the code above in your browser using DataLab