Learn R Programming

TML (version 2.3.0)

trop.tri.plot.w.pts: Plotting PCA-derived tropical triangles

Description

This function conducts tropical PCA to find the best fit tropical triangle given data defined in the tropical projective torus. It employs the vertex HAR with extrapolation sampler to sample points to determine the vertices of the tropical triangle.

Usage

trop.tri.plot.w.pts(S, D)

Value

rendering of tropical triangle saved to current directory

Arguments

S

inital set of vertices for the tropical triangle

D

matrix of data where each row is an observation in the tropical projective torus

Author

Ruriko Yoshida ryoshida@nps.edu

Examples

Run this code
# \donttest{
s <- 3 #number of vertices.  Here it is a tropical triangle
d <- 3 ## dimension
N <- 100 ## sample size
V <- matrix(c(100, 0, 0, 0, 100, 0, 0, 0, 100, -100, 0, 0, 0, -100, 0, 0, 0, -100), 6, 3, TRUE)
D <- matrix(rep(0, N*d), N, d)
D[, 1] <- rnorm(N, mean = 5, sd = 5)
D[, 2] <- rnorm(N, mean = -5, sd = 5)
D[, 3] <- rnorm(N, mean = 0, sd = 5)
index <- sample(1:N, s)
S <- D[index,]
res <- tropical.PCA.Polytope(S, D, V, I = 1000,50)
DD <- pre.pplot.pro(res[[2]], res[[3]])
trop.tri.plot.w.pts(normaliz.ultrametrics(res[[2]]), DD)# }

Run the code above in your browser using DataLab