
TOST Independent Samples T-Test
dataTOSTtwo(data, deps, group, var_equal = FALSE, low_eqbound = -0.5,
high_eqbound = 0.5, eqbound_type = "d", alpha = 0.05,
desc = FALSE, plots = FALSE, low_eqbound_d = -999999999,
high_eqbound_d = -999999999)
the data as a data frame
a vector of strings naming dependent variables in data
a string naming the grouping variable in data
; must
have two levels
TRUE
or FALSE
(default), assume equal
variances
a number (default: -0.5) the lower equivalence bounds
a number (default: 0.5) the upper equivalence bounds
'd'
(default) or 'raw'
; whether the
bounds are specified in Cohen's d or raw units respectively
alpha level (default = 0.05)
TRUE
or FALSE
(default), provide descriptive
statistics
TRUE
or FALSE
(default), provide plots
deprecated
deprecated
A results object containing:
results$tost |
a table | ||||
results$eqb |
a table | ||||
results$desc |
a table | ||||
results$plots |
an array of images |
Tables can be converted to data frames with asDF
or as.data.frame
. For example:
results$tost$asDF
as.data.frame(results$tost)
Berger, R. L., & Hsu, J. C. (1996). Bioequivalence Trials, Intersection-Union Tests and Equivalence Confidence Sets. Statistical Science, 11(4), 283-302.
Gruman, J. A., Cribbie, R. A., & Arpin-Cribbie, C. A. (2007). The effects of heteroscedasticity on tests of equivalence. Journal of Modern Applied Statistical Methods, 6(1), 133-140, formula for Welch's t-test on page 135
# NOT RUN {
library(TOSTER)
## Load iris dataset, remove one of the three groups so two are left
data<-iris[which(iris$Species!="versicolor"),]
## TOST procedure on the raw data
dataTOSTtwo(data, deps="Sepal.Width", group="Species", var_equal = TRUE, low_eqbound = -0.5,
high_eqbound = 0.5, alpha = 0.05, desc = TRUE, plots = TRUE)
# }
Run the code above in your browser using DataLab