## Sample size for alpha = 0.05, 90% power, equivalence bounds of
## Cohen's d = -0.3 and Cohen's d = 0.3, and assuming true effect = 0
powerTOSTone(alpha=0.05, statistical_power=0.9, low_eqbound_d=-0.3, high_eqbound_d=0.3)
## Power for sample size of 121, alpha = 0.05, equivalence bounds of
## Cohen's d = -0.3 and Cohen's d = 0.3, and assuming true effect = 0
powerTOSTone(alpha=0.05, N=121, low_eqbound_d=-0.3, high_eqbound_d=0.3)
## Equivalence bounds for sample size of 121, alpha = 0.05, statistical power of
## 0.9, and assuming true effect d = 0
powerTOSTone(alpha=0.05, N=121, statistical_power=.9)
#' ## Sample size for alpha = 0.05, 90% power, equivalence bounds of -0.3 and 0.3 in
## raw units, assuming pooled standard deviation of 1, and assuming true effect d = 0
powerTOSTone.raw(alpha=0.05, statistical_power=0.9, sd = 1, low_eqbound=-0.3, high_eqbound=0.3)
## Power for sample size of 121, alpha = 0.05, equivalence bounds of
## -0.3 and 0.3 in raw units, assuming pooled standard deviation of 1, and assuming true effect = 0
powerTOSTone.raw(alpha=0.05, N=121, sd = 1, low_eqbound=-0.3, high_eqbound=0.3)
## Power for sample size of 121, alpha = 0.05, statistical power of
## 0.9, and assuming true effect = 0
powerTOSTone.raw(alpha=0.05, N=121, statistical_power=.9, sd=1)
Run the code above in your browser using DataLab