## Sample size for alpha = 0.05, 80% power, equivalence bounds of
## Cohen's dz = -0.3 and Cohen's d = 0.3, and assuming true effect = 0
powerTOSTpaired(alpha=0.05,statistical_power=0.8,low_eqbound_dz=-0.3,high_eqbound_dz=0.3)
## Sample size for alpha = 0.05, N = 96 pairs, equivalence bounds of
## Cohen's dz = -0.3 and Cohen's d = 0.3, and assuming true effect = 0
powerTOSTpaired(alpha=0.05,N=96,low_eqbound_dz=-0.3,high_eqbound_dz=0.3)
## Equivalence bounds for alpha = 0.05, N = 96 pairs, statistical power of
## 0.8, and assuming true effect = 0
powerTOSTpaired(alpha=0.05,N=96,statistical_power=0.8)
## Sample size for alpha = 0.05, 80% power, equivalence bounds of -3 and 3 in raw units
## and assuming a standard deviation of the difference scores of 10, and assuming a true effect = 0
powerTOSTpaired.raw(alpha=0.05,statistical_power=0.8,low_eqbound=-3, high_eqbound=3, sdif=10)
## Sample size for alpha = 0.05, N = 96 pairs, equivalence bounds of -3 and 3 in raw units
## and assuming a standard deviation of the difference scores of 10, and assuming a true effect = 0
powerTOSTpaired.raw(alpha=0.05,N=96,low_eqbound=-3, high_eqbound=3, sdif=10)
## Equivalence bounds for alpha = 0.05, N = 96 pairs, statistical power of 0.8
## and assuming a standard deviation of the difference scores of 10, and assuming a true effect = 0
Run the code above in your browser using DataLab