analyzeTPPCCR(configTable, data = NULL, resultPath = NULL, idVar = "gene_name", fcStr = "rel_fc_", naStrs = c("NA", "n/d", "NaN", ""), qualColName = "qupm", normalize = TRUE, ggplotTheme = tppDefaultTheme(), nCores = "max", nonZeroCols = "qssm", r2Cutoff = 0.8, fcCutoff = 1.5, slopeBounds = c(1, 50), plotCurves = TRUE, verbose = FALSE, xlsxExport = TRUE, fcTolerance = 0.1)
details
for instructions how to create this object.configTable
argument.fcStr
will be regarded as containing fold change values.na.strings
in function read.delim
.resultPath
argument.tppccrImport
function. tppccrNormalize
function.
To perform normalization, set argument normalize=TRUE
. tppccrCurveFit
function. tppExport
function.
The default settings are tailored towards the output of the python package
isobarQuant, but can be customised to your own dataset by the arguments
idVar, fcStr, naStrs, qualColName
.
If resultPath
is not specified, result files are stored at the path
defined in the first entry of configTable$Path
. If the input data are not
specified in configTable
, no result path will be set. This means
that no output files or dose response curve plots are produced and
analyzeTPPCCR
just returns the results as a data frame.
The function analyzeTPPCCR
reports intermediate results to the
command line. To suppress this, use suppressMessages
.
The dose response curve plots will be stored in a subfolder with
name DoseResponse_Curves
at the location specified by
resultPath
.
Only proteins with fold changes bigger than
[fcCutoff * (1 - fcTolerance)
or smaller than
1/(fcCutoff * (1 - fcTolerance))]
will be used for curve fitting.
Additionally, the proteins fulfilling the fcCutoff criterion without
tolerance will be marked in the output column meets_FC_requirement
.
data(hdacCCR_smallExample)
tppccrResults <- analyzeTPPCCR(configTable=hdacCCR_config,
data=hdacCCR_data, nCores=1)
Run the code above in your browser using DataLab