Learn R Programming

TRES (version 0.1.0)

PMSE: Predictions and Mean squared error for tensor predictor regression

Description

Evaluate tensor predictor regression through prediction mean squared error.

Usage

PMSE(Xn, Yn, Bhat)

Arguments

Xn

A predictor tensor.

Yn

A response vector.

Bhat

An estimation of coefficient tensor.

Value

mse

Mean squared error. Defined as \(trace(\sum_{i=1}^n(\mathbf{Y}_i-\hat{\mathbf{Y}}_i)(\mathbf{Y}_i-\hat{\mathbf{Y}}_i)'/n)\), where \(\hat{\mathbf{Y}}_i\) is the predictions.

Yhat

The predictions of tensor predictor regression.