Learn R Programming

TRES (version 0.1.0)

TensPLS_fit: Tensor envelope partial least squares (PLS) regression

Description

This function estimates the factor matrix \(W_k, k=1,\cdots,m\) in tensor PLS algorithm for tensor predictor regression, see Zhang, X., & Li, L. (2017).

Usage

TensPLS_fit(Xn, Yn, SigX, u)

Arguments

Xn

A predictor tensor of dimension \(p_1\times \cdots \times p_m\).

Yn

The response vector of dimension \(r\).

SigX

A matrix lists \(\boldsymbol{\Sigma}_k, k=1,\cdots, m\), which determins the estimation of covariance matrix \(\boldsymbol{\Sigma}=\boldsymbol{\Sigma}_m \otimes \cdots \otimes \boldsymbol{\Sigma}_1\).

u

The dimension of envelope subspace, \(u=(u_1,\cdots,u_m)\).

Value

Gamma

The estimation of factor matrix \(W_k, k=1,\cdots,m\).

PGamma

The projection matrix \(W_k(W_k'\boldsymbol{\Sigma}_k W_k)^{-1}W_k'\boldsymbol{\Sigma}_k, k=1,\cdots,m\).

References

Zhang, X., & Li, L. (2017). Tensor Envelope Partial Least-Squares Regression. Technometrics, 59(4), 426-436.