Learn R Programming

TRES (version 1.1.1)

EnvMU: Estimate envelope subspace basis

Description

SIMPLS-type algorithm for estimating the envelope subspace without manifold optimization.

Usage

EnvMU(M, U, u)

Arguments

M

M matrix in the envelope objective function. An \(p\)-by-\(p\) positive semi-definite matrix.

U

U matrix in the envelope objective function. An \(p\)-by-\(p\) positive semi-definite matrix.

u

The envelope dimension.

Value

Return the orthogonal basis of the envelope subspace.

Details

Estimate M-envelope of span(U) where M > 0. The dimension of the envelope is u. This algorithm is a generalization of De Jong, S. (1993) and Cook, R. D., Helland, I. S., & Su, Z. (2013). It generalizes from predictor envelopes to an arbitrary M-envelope of span(U).

References

Cook, R. D., Helland, I. S., Su, Z. (2013). Envelopes and partial least squares regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(5), 851-877.

De Jong, S. (1993). SIMPLS: an alternative approach to partial least squares regression. Chemometrics and intelligent laboratory systems, 18(3), 251-263.