TSdist distance calculation between two time series.
TSDistances(x, y, tx, ty, distance, ...)
The computed distance between the pair of time series.
Numeric vector or ts
, zoo
or xts
object containing the first time series.
Numeric vector or ts
, zoo
or xts
object containing the second time series.
Optional temporal index of series x
. Only necessary if x
is a numeric vector and the sampling index is not constant.
Optional temporal index of series y
. Only necessary if y
is a numeric vector and the sampling index is not constant.
Distance measure to be used. It must be one of: "euclidean"
, "manhattan"
, "minkowski"
, "infnorm"
, "ccor"
, "sts"
, "dtw"
, "keogh.lb"
, "edr"
, "erp"
, "lcss"
, "fourier"
, "tquest"
, "dissim"
, "acf"
, "pacf"
, "ar.lpc.ceps"
, "ar.mah"
, "ar.mah.statistic"
, "ar.mah.pvalue"
, "ar.pic"
, "cdm"
, "cid"
, "cor"
, "cort"
, "int.per"
, "per"
, "mindist.sax"
, "ncd"
, "pred"
, "spec.glk"
, "spec.isd"
,
"spec.llr"
, "pdc"
, "frechet"
,"tam"
)
Additional parameters required by the distance method.
Usue Mori, Alexander Mendiburu, Jose A. Lozano.
The distance between the two time series x
and y
is calculated. x
and y
can be saved in a numeric vector or a ts
, zoo
or xts
object. The following distance methods are supported:
"euclidean": Euclidean distance. EuclideanDistance
"manhattan": Manhattan distance. ManhattanDistance
"minkowski": Minkowski distance. MinkowskiDistance
"infnorm": Infinite norm distance. InfNormDistance
"ccor": Distance based on the cross-correlation. CCorDistance
"sts": Short time series distance. STSDistance
"dtw": Dynamic Time Warping distance. DTWDistance
. Uses the dtw package (see dtw
).
"lb.keogh": LB_Keogh lower bound for the Dynamic Time Warping distance. LBKeoghDistance
"edr": Edit distance for real sequences. EDRDistance
"erp": Edit distance with real penalty. ERPDistance
"lcss": Longest Common Subsequence Matching. LCSSDistance
"fourier": Distance based on the Fourier Discrete Transform. FourierDistance
"tquest": TQuest distance. TquestDistance
"dissim": Dissim distance. DissimDistance
"acf": Autocorrelation-based dissimilarity ACFDistance
. Uses the TSclust package (see diss.ACF
).
"pacf": Partial autocorrelation-based dissimilarity PACFDistance
. Uses the TSclust package (see diss.PACF
).
"ar.lpc.ceps": Dissimilarity based on LPC cepstral coefficients ARLPCCepsDistance
. Uses the TSclust package (see diss.AR.LPC.CEPS
).
"ar.mah": Model-based dissimilarity proposed by Maharaj (1996, 2000) ARMahDistance
. Uses the TSclust package (see diss.AR.MAH
).
"ar.pic": Model-based dissimilarity measure proposed by Piccolo (1990) ARPicDistance
. Uses the TSclust package (see diss.AR.PIC
).
"cdm": Compression-based dissimilarity measure CDMDistance
. Uses the TSclust package (see diss.CDM
).
"cid": Complexity-invariant distance measure CIDDistance
. Uses the TSclust package (see diss.CID
).
"cor": Dissimilarities based on Pearson's correlation CorDistance
. Uses the TSclust package (see diss.COR
).
"cort": Dissimilarity index which combines temporal correlation and raw value
behaviors CortDistance
. Uses the TSclust package (see diss.CORT
).
"int.per": Integrated periodogram based dissimilarity IntPerDistance
. Uses the TSclust package (see diss.INT.PER
).
"per": Periodogram based dissimilarity PerDistance
. Uses the TSclust package (see diss.PER
).
"mindist.sax": Symbolic Aggregate Aproximation based dissimilarity MindistSaxDistance
. Uses the TSclust package (see diss.MINDIST.SAX
).
"ncd": Normalized compression based distance NCDDistance
. Uses the TSclust package (see diss.NCD
).
"pred": Dissimilarity measure cased on nonparametric forecasts PredDistance
. Uses the TSclust package (see diss.PRED
).
"spec.glk": Dissimilarity based on the generalized likelihood ratio test SpecGLKDistance
. Uses the TSclust package (see diss.SPEC.GLK
).
"spec.isd": Dissimilarity based on the integrated squared difference between the log-spectra SpecISDDistance
. Uses the TSclust package (see diss.SPEC.ISD
).
"spec.llr": General spectral dissimilarity measure using local-linear estimation of the log-spectra SpecLLRDistance
. Uses the TSclust package (see diss.SPEC.LLR
).
"pdc": Permutation Distribution Distance PDCDistance
. Uses the pdc package (see pdcDist
).
"frechet": Frechet distance FrechetDistance
. Uses the longitudinalData package (see distFrechet
).
"tam": Time Aligment Measurement TAMDistance
.
Some distance measures may require additional arguments. See the individual help pages (detailed above) for more information about each method.
# The objects zoo.series1 and zoo.series2 are two
# zoo objects that save two series of length 100.
data(zoo.series1)
data(zoo.series2)
# For information on their generation and shape see
# help page of example.series.
help(example.series)
# The distance calculation for these two series is done
# as follows:
TSDistances(zoo.series1, zoo.series2, distance="infnorm")
TSDistances(zoo.series1, zoo.series2, distance="cor", beta=3)
TSDistances(zoo.series1, zoo.series2, distance="dtw", sigma=20)
Run the code above in your browser using DataLab