Learn R Programming

TapeS (version 0.13.3)

tprBiomass: total aboveground and component biomass

Description

calculate total above ground and optionally component biomass for given trees

Usage

tprBiomass(
  obj,
  component = NULL,
  useNFI = TRUE,
  interval = "none",
  mono = TRUE,
  Rfn = NULL
)

# S4 method for tprTrees tprBiomass( obj, component = NULL, useNFI = TRUE, interval = "none", mono = TRUE, Rfn = NULL )

Value

a vector in case agb or only one component is requested, otherwise a matrix with one row per tree

Arguments

obj

object of class 'tprTrees'

component

component for which biomass should be returned. If NULL, total aboveground biomass is returned, if 'all', all components are returned. See details.

useNFI

if TRUE, agb is estimated by the NFI-functions and component estimates are scaled so that their sum (i.e. agb) equals the estimate of the NFI functions. If FALSE, the NSUR functions are used for agb and component estimates.

interval

character to indicate whether and which type of interval is required; one of none, confidence or prediction.

mono

logical, defaults to true. If calibrated taper curve is non-monotonic at stem base, a support diameter is added.

Rfn

Rfn setting for residuals error matrix, defaults to list(fn="sig2"), see resVar.

Methods (by class)

  • tprBiomass(tprTrees): method for class 'tprTrees'

Details

The available components are agb (= total aboveground biomass), stw (=stump wood), stb (=stump bark), sw (=solid wood with diameter above 7cm over bark), sb (=bark of component sw), fwb (=fine wood incl. bark) and ndl (=needles), if applicable. The needles-component is set to zero for deciduous tree species, no mass for leaves is available. One can request 'all' components to receive all components.

References

Kändler, G. and B. Bösch (2012). Methodenentwicklung für die 3. Bundeswaldinventur: Modul 3 Überprüfung und Neukonzeption einer Biomassefunktion - Abschlussbericht. Im Auftrag des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz in Zusammenarbeit mit dem Institut für Waldökologie und Waldinventur des Johann Heinrich von Thünen-Instituts, FVA-BW: 71.

Kaendler (2021): Biometrische Modelle für die Ermittlung des Holzvorrats, seiner Sortimentsstruktur und der oberirdischen Biomasse im Rahmen der Bundeswaldinventur. Allg. Forst- u. J.-Ztg., 191. Jg., 5/6 83

Vonderach, C., G. Kändler and C. Dormann (2018): Consistent set of additive biomass equations for eight tree species in Germany fitted by nonlinear seemingly unrelated regression. Annals of Forest Science (2018) 75:49 doi: 10.1007/s13595-018-0728-4

Examples

Run this code
obj <- tprTrees(spp=c(1, 15),
                Dm=list(c(30, 28), c(30, 28)),
                Hm=list(c(1, 3), c(1, 3)),
                Ht = rep(30, 2))
(tmp <- tprBiomass(obj, component="all"))

tprBiomass(obj, component=NULL) # aboveground biomass
component <- c("agb", "sw", "sb", "ndl")
tprBiomass(obj, component=component)
component <- c("sw", "sb", "ndl")
tprBiomass(obj, component="all")
# use NSUR-functions from Vonderach et al. 2018
# obs: currently sth=1% of tree height
# and kl=70% of tree height
tprBiomass(obj, component="all",  useNFI = FALSE)

## getting confidence and prediction intervals
useNFI <- FALSE
interval <- "confidence"
component <- c("sw", "agb")
tprBiomass(obj, component, useNFI, interval)
tprBiomass(obj, component, useNFI, interval="none")
tprBiomass(obj, component, useNFI=TRUE, interval)
tprBiomass(obj, component, useNFI=TRUE, interval="none")

obj <- tprTrees(spp=15, Dm=30, Hm=1.3, Ht=27)
tprBiomass(obj, component="all", interval="confidence")
tprBiomass(obj, component="ndl", interval="confidence")

obj <- tprTrees(spp=c(1, 15), Dm=c(30, 30), Hm=c(1.3, 1.3), Ht=c(27, 27))
tprBiomass(obj, component="all", interval="confidence")

obj <- tprTrees(spp=c(1, 15), Dm=c(30, 30), Hm=c(1.3, 1.3), Ht=c(27, 27))
tprBiomass(obj, component=c("sw", "ndl"), interval="confidence")

obj <- tprTrees(spp=c(1, 15), Dm=c(30, 30), Hm=c(1.3, 1.3), Ht=c(27, 27))
tprBiomass(obj, component=c("ndl", "agb"), interval="confidence")

obj <- tprTrees(spp=c(1, 15), Dm=c(30, 30), Hm=c(1.3, 1.3), Ht=c(27, 27))
tprBiomass(obj, component=c("ndl"), interval="confidence")

Run the code above in your browser using DataLab