Each row in fdiff corresponds to a specific pixel position in a thermal video frame. Data frames are preferred over array functions for speed and simplicity. Row numbers range from 1 through to the image dimensions (i.e. w*h = 640 * 480=307200). Image dimensions are not required, provided the row number corresponds to the same relative position.
The premise behind this is that the thermal video is either time lapse or higher speed video. If a specific pixel shows no change (0) from frame to frame, then there is no movement or temperature change. For videos of living specimens, movement artefacts will manifest as change over time at specific pixels. If there is sufficient movement, across the image space, the accumulation of small differences will provide a measure of relative activity from frame to frame.
cumulDiff takes the average, standard deviation and rootmean square of all pixels within one frame to arrive at an aggregate value for each difference frame (absolute value). Subsequently, it sums these successive data points (avg,sd,rms) across all frames, arriving at an absolute difference summation. This results in an incrementing value, of which the slope will be a semi-quantitative assessment of relative change. It also provides a clean break point when activity ceases (Lighton, 2008).
The extract.times value (POSIX) is required to provide a time index as well as to calculate the frame rate.