Learn R Programming

ThreeWay (version 1.1.3)

pcasup2: PCASup Analysis

Description

Computes PCASup analysis for the directions concerning the reduced modes.

Usage

pcasup2(X, n, m, p, model)

Arguments

X
Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)
n
Number of A-mode entities
m
Number of B-mode entities
p
Number of C-mode entities
model
Tucker2 model choice (1 for T2-AB, 2 for T2-AC, 3 for T2-BC)

Value

A list including the following components:
A
Matrix of the eingenvectors of the supermatrix containing the frontal slices of the array (A-mode)
B
Matrix of the eingenvectors of the supermatrix containing the horizontal slices of the array (B-mode)
C
Matrix of the eingenvectors of the supermatrix containing the lateral slices of the array (C-mode)
la
Vector of the eigenvalues of the supermatrix containing the frontal slices of the array (A-mode)
lb
Vector of the eigenvalues of the supermatrix containing the horizontal slices of the array (B-mode)
lc
Vector of the eigenvalues of the supermatrix containing the lateral slices of the array (C-mode)

References

H.A.L. Kiers (1991). Hierarchical relations among three-way methods. Psychometrika 56: 449--470. H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics 14:105--122. L.R Tucker (1966). Some mathematical notes on three-mode factor analysis. Psychometrika 31: 279--311.

See Also

T2

Examples

Run this code
data(Bus)
# PCA-sup for T2-AB
pcasupBus <- pcasup2(Bus, 7, 5, 37, 1)

Run the code above in your browser using DataLab