# Maximum variation = information content of each split separately
A <- TRUE
B <- FALSE
MeilaVariationOfInformation(c(A, A, A, B, B, B), c(A, A, A, A, A, A))
Entropy(c(3, 3) / 6) + Entropy(c(0, 6) / 6)
# Minimum variation = 0
MeilaVariationOfInformation(c(A, A, A, B, B, B), c(A, A, A, B, B, B))
# Not always possible for two evenly-sized splits to reach maximum
# variation of information
Entropy(c(3, 3) / 6) * 2 # = 2
MeilaVariationOfInformation(c(A, A, A,B ,B, B), c(A, B, A, B, A, B)) # < 2
# Phylogenetically uninformative groupings contain spliting information
Entropy(c(1, 5) / 6)
MeilaVariationOfInformation(c(B, A, A, A, A, A), c(A, A, A, A, A, B))
Run the code above in your browser using DataLab