tree1 <- ape::read.tree(text="((((a, b), c), d), (e, (f, (g, h))));")
tree2 <- ape::read.tree(text="(((a, b), (c, d)), ((e, f), (g, h)));")
tree3 <- ape::read.tree(text="((((h, b), c), d), (e, (f, (g, a))));")
# Best possible score is obtained by matching a tree with itself
DifferentPhylogeneticInfo(tree1, tree1) # 0, by definition
SharedPhylogeneticInfo(tree1, tree1)
SplitwiseInfo(tree1) # Maximum shared phylogenetic information
# Best possible score is a function of tree shape; the splits within
# balanced trees are more independent and thus contain less information
SplitwiseInfo(tree2)
# How similar are two trees?
SharedPhylogeneticInfo(tree1, tree2) # Amount of phylogenetic information in common
attr(SharedPhylogeneticInfo(tree1, tree2, reportMatching = TRUE), "matching")
VisualizeMatching(SharedPhylogeneticInfo, tree1, tree2) # Which clades are matched?
DifferentPhylogeneticInfo(tree1, tree2) # Distance measure
DifferentPhylogeneticInfo(tree2, tree1) # The metric is symmetric
# Are they more similar than two trees of this shape would be by chance?
ExpectedVariation(tree1, tree2, sample=12)["DifferentPhylogeneticInfo", "Estimate"]
# Every split in tree1 conflicts with every split in tree3
# Pairs of conflicting splits contain clustering, but not phylogenetic,
# information
SharedPhylogeneticInfo(tree1, tree3) # = 0
MutualClusteringInfo(tree1, tree3) # > 0
# Distance functions internally convert trees to Splits objects.
# Pre-conversion can reduce run time if the same trees will feature in
# multiple comparisons
splits1 <- TreeTools::as.Splits(tree1)
splits2 <- TreeTools::as.Splits(tree2)
SharedPhylogeneticInfoSplits(splits1, splits2)
MatchingSplitInfoSplits(splits1, splits2)
MutualClusteringInfoSplits(splits1, splits2)
Run the code above in your browser using DataLab