Print the list of available metrics for fastPointMetrics
.
fastPointMetrics.available(enable = ENABLED_POINT_METRICS$names)
optional integer
or character
vector containing indices or names of the metrics you want to
enable globally. Enabled metrics are calculated every time you run fastPointMetrics
by default.
Only metrics used internally in other TreeLS methods are enabled out-of-the-box.
character
vector of all metrics.
* EVi = i-th 3D eigen value
* EV2Di = i-th 2D eigen value
N
: number of nearest neighbors
MinDist
: minimum distance among neighbors
MaxDist
: maximum distance among neighbors
MeanDist
: mean distance
SdDist
: standard deviation of within neighborhood distances
Linearity
: linear saliency, (EV_1 + EV_2) / EV_1(EV1 + EV2) / EV1
Planarity
: planar saliency, (EV_2 + EV_3) / EV_1(EV2 + EV3) / EV1
Scattering
: EV_3 / EV_1EV3 / EV1
Omnivariance
: (EV_2 + EV_3) / EV_1(EV2 + EV3) / EV1
Anisotropy
: (EV_1 - EV_3) / EV_1(EV1 - EV3) / EV1
Eigentropy
: - _i=1^n=3 EV_i * ln(EV_i)-sum(EV * ln(EV))
EigenSum
: sum of eigenvalues, _i=1^n=3 EV_isum(EV)
Curvature
: surface variation, EV_3 / EigenSumEV3 / EigenSum
KnnRadius
: 3D neighborhood radius
KnnDensity
: 3D point density (N / sphere volume)
Verticality
: absolute vertical deviation, in degrees
ZRange
: point neighborhood height difference
ZSd
: standard deviation of point neighborhood heights
KnnRadius2d
: 2D neighborhood radius
KnnDensity2d
: 2D point density (N / circle area)
EigenSum2d
: sum of 2D eigenvalues, _i=1^n=2 EV2D_isum(EV2D)
EigenRatio2d
: EV2D_2 / EV2D_1EV2D2 / EV2D1
EigenValuei
: 3D eigenvalues
EigenVectorij
: 3D eigenvector coefficients, i-th load of j-th eigenvector
# NOT RUN {
m = fastPointMetrics.available()
length(m)
# }
Run the code above in your browser using DataLab