NOTE: the dataset must be dense matrix in UCSC Xena data hubs.
vis_identifier_multi_cor(
dataset,
ids,
samples = NULL,
matrix.type = c("full", "upper", "lower"),
type = c("parametric", "nonparametric", "robust", "bayes"),
partial = FALSE,
sig.level = 0.05,
p.adjust.method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",
"none"),
color_low = "#E69F00",
color_high = "#009E73",
...
)
a (gg)plot object.
the dataset to obtain identifiers.
the molecule identifiers.
default is NULL
, can be common sample names for two datasets.
Character, "upper"
(default), "lower"
, or "full"
,
display full matrix, lower triangular or upper triangular matrix.
A character specifying the type of statistical approach:
"parametric"
"nonparametric"
"robust"
"bayes"
You can specify just the initial letter.
Can be TRUE
for partial correlations. For Bayesian partial
correlations, "full" instead of pseudo-Bayesian partial correlations (i.e.,
Bayesian correlation based on frequentist partialization) are returned.
Significance level (Default: 0.05
). If the p-value in
p-value matrix is bigger than sig.level
, then the corresponding
correlation coefficient is regarded as insignificant and flagged as such in
the plot.
Adjustment method for p-values for multiple
comparisons. Possible methods are: "holm"
(default), "hochberg"
,
"hommel"
, "bonferroni"
, "BH"
, "BY"
, "fdr"
, "none"
.
the color code for lower value mapping.
the color code for higher value mapping.
other parameters passing to ggstatsplot::ggcorrmat.
if (FALSE) {
dataset <- "TcgaTargetGtex_rsem_isoform_tpm"
ids <- c("TP53", "KRAS", "PTEN")
vis_identifier_multi_cor(dataset, ids)
}
Run the code above in your browser using DataLab